Big Biomedical Data analysis

Jun Ding, Ph.D Assistant Professor

Department of medicine School of Computer Science Department of Biomedical engineering Department of Human Genetics McGill University MILA-Quebec AI Institute 2024/07/08

My research

Me:

Assistant professor, Department of Medicine QLS member School of Computer Science Associate member of Biomedical Engineering McGill University FRQS Junior 1 Researcher MILA-Quebec AI Institute

ing La					
Home	People	News	Publications	Positions	Software
	Wel	come!			
Seen Positions: <u>AWI (undated</u> <u>09/2021)</u> are seeking ented individuals who we our passion for ge-cell genomics I machine learning blication in health ence.					

We are a computational biology group at the Meakins-Christie Laboratories of the McGill University School of Medicine. Our lab focuses on studying cell dynamics in various biological processes in many diseases (e.g., developmental disorder, pulmonary diseases, cancers). Decoding cell dynamics is essential for understanding the pathogenesis of diseases and finding novel therapeutics. The existence of enormous heterogeneity in those diseases makes

My research:

- 1) Machine learning in health science probabilistic graphical models supervised/unsupervised deep neural nets
- 2) Single-cell Cellular dynamics Single-cell Transcriptomics Single-cell multi-omics Data visualizations

You?

- ~1 min quick introduction (In English/Chinese)
- 1) Who am I?
- 2) My major?
- 3) What do I want to get out from this course?

What this course is about?

Bioinformatics

Computational Biology

Al+health (machine learning in health science)

All images are from network

Discovery of cell

Robert Hooke, 1665

Image from *Encyclopædia Britannica*, Inc.

Discovery of gene

Gregor Mendel

Gregor Mendel

was a monk in mid 1800's who discovered how genes were passed on.

He used peas to determine the pattern of heredity

The image was download from slideplayer.com

Discovery of DNA (and its double helix structure)

Swiss physician and biologist Friedrich Miescher

James Watson and Francis Crick

Images are from the DNA wiki page (https://en.wikipedia.org/wiki/DNA)

Human genome project

BIOLOGY PHYSICS CHEMISTRY 5 FUCINEERING INFORMA

No.	Nation	Name	Affiliation
1		The Whitehead Institute/MIT Center for Genome Research	Massachusetts Institute of Technology
2		The Wellcome Trust Sanger Institute	Wellcome Trust
3		Washington University School of Medicine Genome Sequencing Center	Washington University in St. Louis
4		United States DOE Joint Genome Institute	United States Department of Energy
5		Baylor College of Medicine Human Genome Sequencing Center	Baylor College of Medicine
6	•	RIKEN Genomic Sciences Center	Riken
7		Genoscope and CNRS UMR-8030	French Alternative Energies and Atomic Energy Commission
В		GTC Sequencing Center	Genome Therapeutics Corporation, whose sequencing division is acquired by ABI
9		Department of Genome Analysis	Fritz Lipmann Institute &, name changed from Institute of Molecular Biotechnology
10	-	Beijing Genomics Institute/Human Genome Center	Chinese Academy of Sciences
11		Multimegabase Sequencing Center	Institute for Systems Biology
12		Stanford Genome Technology Center	Stanford University
13		Stanford Human Genome Center and Department of Genetics	Stanford University School of Medicine
14		University of Washington Genome Center	University of Washington
15	•	Department of Molecular Biology	Keio University School of Medicine
16		University of Texas Southwestern Medical Center at Dallas	University of Texas
17		University of Oklahoma's Advanced Center for Genome Technology	Dept. of Chemistry and Biochemistry, University of Oklahoma
18	-	Max Planck Institute for Molecular Genetics	Max Planck Society
19		Lita Annenberg Hazen Genome Center	Cold Spring Harbor Laboratory
20	-	GBF/German Research Centre for Biotechnology	Reorganized and renamed to Helmholtz Center for Infection Research@

What does DNA look like?

Images are from wiki pages (https://en.wikipedia.org/wiki/DNA_sequencing)

How to represent a cell (e.g., what we often call genomics)

https://www.researchgate.net/publication/364396236_Single_cell_technologies_From_research_to_application/figures?lo=1

DNA data

DNA data (genome)

All images are from network

C Encyclopædia Britannica, Inc.

Why we need to study the DNA?

1) Better understand our human species (--> evolution)

It can answer who we are?

"Who" created us?

2) Better understand the mechanisms for many diseases

https://www.medicinenet.com/genetic_disease/article.htm

- 1. cystic fibrosis,
- 2. alpha- and beta-thalassemias,
- 3. sickle cell anemia (sickle cell disease),
- 4. Marfan syndrome,
- 5. fragile X syndrome,
- 6. Huntington's disease, and
- 7. hemochromatosis.

3) ** how to better "engineer" our genome**

(legal and ethical issues, might change in the near future)

RNA data

RNA is a big family

mRNAs: messenger RNA

miRNAs: microRNA

. . .

IncRNAs: long non-coding RNAs

mRNAs

How many?

Not sure (around $20k \sim 30k$).

What do they do?

microRNAs

How many?

~2k

What do they do?

IncRNAs

How many?

30k~60k

What do they do?

-> interact with DNA, other mRNAs, proteins.

Why we want/need to study RNAs

Protein data

Protein sequence

All images are from network

1) How many proteins

80k-400k proteins in human

2) What do they do?

Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for the structure, function, and regulation of the body's tissues and organs.

Other data

Other biomolecules

The four major types of biomolecules are carbohydrates, lipids, nucleic acids, and proteins.

Bioimaging data

X-ray CT-Scan

...

Clinical health record

Disease severity Disease diagnosis Disease progression Disease treatment Disease prognosis

Biomedical Data analysis platform

Install your python

Anaconda platform

https://www.anaconda.com/download

1) download the versions for your computer (mac or windows)

2) install anaconda

3)

Write your first bioinformatics program

Write an "encoder" function to encode your name into DNA sequence

Write a "decoder" function to decode the DNA sequence into your name

Encoding rule:

https://www.illumina.com/content/dam/illumina-marketing/documents/landing/stem /Translate%20Your%20Name%20Into%20DNA%20Code.pdf

Translate Your Name Into DNA Code

Write your name in the space below and use the table to translate it into a DNA sequence.

Our Alphabet	Amino Acid Name	Simplified Codon
A	Alanine	GCT
В		GCA (Alanine)
С	Cysteine	TGC
D	Aspartic acid	GAT
E	Glutamic acid	GAG
F	Phenylalanine	π
G	Glycine	GGG CAT
Н	Histidine	
1	Isoleucine	ATA
J		ATC (Isoleucine)
К	Lysine	AAG
L	Leucine	СТС
М	Methionine	ATG
N	Asparagine	GAC
0		GAT (Asparagine)
Р	Proline	CCC
Q	Glutamine	GAG
R	Arginine	CGT
S	Serine	TCA
т	Threonine	ACT
U		ACG (Threonine)
V	Valine	GTC
W	Tryptophan	TGG
х		GTA (Valine)
Y	Tyrosine	TAC
Z		TAT (Tyrosine)

Find one in the other team to evaluate your encoding

Who is your mate in the other team? Base-pairing of your initials

Example:

My initial: JD

=>**A**TC,**G**AT =>T,C (if no exact match, find the closest one)

Send him/her your encoded DNA sequence and your name for evaluation.

If it's the decoding and the given name are not consistent, figure out who is wrong (winner gets 1 score, loser gets 0)

S(A)=

S(B)=

At the end of the course, we will test whether S(A)/S(B) is significantly bigger than S(B)/S(A)?

All in the winner group will have a bonus of 5 scores

DNA data analysis

- 1) Download a DNA sequence
- 2) Sequence alignment
- 3) Find a DNA motif
- 4) Identify a DNA mutation

How to download DNA sequences?

1) Ensembl

https://useast.ensembl.org/index.html

2) NCBI

3) UCSC genome browser

Sequence alignment

Example:	Sequences		Alignment
	ACCCGA		ACCCGA
	ACTA	$\Rightarrow_{\text{align}}$	ACTA
	TCCTA		TCC-TA

images/slides partially come from course (https://math.mit.edu/classes/18.417)

Edit distance

An *edit operation* is a pair $(x, y) \in (\Sigma \cup \{-\} \neq (-, -)$. We call (x,y)

- substitution iff $x \neq -$ and $y \neq -$
- deletion iff y = -
- insertion iff x = −

For sequences a, b, write $a \rightarrow_{(x,y)} b$, iff a is transformed to b by operation (x, y). Furthermore, write $a \Rightarrow_S b$, iff a is transformed to b by a sequence of edit operations S.

Example

ACCCGA →_(C,-) ACCGA →_(G,T) ACCTA →_(-,T) ATCCTA ACCCGA ⇒_{(C,-),(G,T),(-,T)} ATCCTA

images/slides partially come from course (https://math.mit.edu/classes/18.417)

Comparing two DNA sequences

- Given two possibly related strings S1 and S2
 - What is the longest common subsequence?

images/slides partially come from course (https://math.mit.edu/classes/18.417) https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithmsfor-computational-biology-spring-2005/lecture-notes/lecture5_newest.pdf

How can we compute best alignment

- Need scoring function:
 - Score(alignment) = Total cost of editing S1 into S2
 - Cost of mutation
 - Cost of insertion / deletion
 - Reward of match
- Need algorithm for inferring best alignment
 - Enumeration?
 - How would you do it?
 - How many alignments are there?

images/slides partially come from course (https://math.mit.edu/classes/18.417) https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithmsfor-computational-biology-spring-2005/lecture-notes/lecture5_newest.pdf

Dynamic programming

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithmsfor-computational-biology-spring-2005/lecture-notes/lecture5_newest.pdf

Example

Align the DNA sequence encoded from your initials with someone else in your opposite team

Compare the best alignment that you got, find out whether they are consistent.

If not, figure out which answer is correct

Record the score

S(A)

S(B)

Why we want to align sequences?

Essentially, sequence alignment is used to find the distance between "sequences"

A lot of applications:

- 1) Assembly the genome
- 2) Quantify gene expression
- 3) Study the conservation between species

4) Understand the evolution

Python Basics

Python basics

Basic syntax

https://www.learnpython.org/

Python file inputs/outputs

Read /Write

- 1) Write a string to a file
- 2) Read back the string from the file

1) Find a DNA motif

TF binding pattern-motif

Example: TATA BOX <-> TBP

TATABOX: TATAWAWA

TATA[A/T]A[A/T]A

=>

ΤΑΤΑΑΑΑ

ΤΑΤΑΑΑΤΑ

ΤΑΤΑΤΑΑ

ΤΑΤΑΤΑΤ

Nucleotide Code:	Base:
A	.Adenine
C	
G	
T (or U)	.Thymine (or Uracil)
R	.A or G
Υ	.C or T
S	.G or C
W	
К	
M	
В	
D	
Н	
V	
N	
. or	

How to identify DNA motifs?

Enrichment analysis

An example:

JUND

JUNB

FOS

IRF1

IRF2

ATF2

How to find DNA motifs?

CHIP-Seq

(A) Sample preparation and sequencing

Nakato, Ryuichiro, and Toyonori Sakata. "Methods for ChIP-seq analysis: A practical workflow and advanced applications." *Methods* (2020).

Map the reads to the reference genome

bowtie2

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

specified many times. E.g. '-U file1.fq,file2.fq -U file3.fq'.

Bowtie 2 ver Usage:	sion 2.3.4.1 by Ben Langmead (langmea@cs.jhu.edu, www.cs.jhu.edu/~langmea)
	ptions]* -x <bt2-idx> {-1 <m1> -2 <m2> -U <r> interleaved <i>} [-S <sam>]</sam></i></r></m2></m1></bt2-idx>
<bt2-idx></bt2-idx>	Index filename prefix (minus trailing .X.bt2). NOTE: Bowtie 1 and Bowtie 2 indexes are not compatible.
<m1></m1>	Files with #1 mates, paired with files in <m2>. Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).</m2>
<m2></m2>	Files with #2 mates, paired with files in <m1>. Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).</m1>
<r></r>	Files with unpaired reads. Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).
<i></i>	Files with interleaved paired-end FASTQ reads Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).
<sam></sam>	File for SAM output (default: stdout)
<m1>, <m2></m2></m1>	, <r> can be comma-separated lists (no whitespace) and can be</r>

Peak calling method

MACS2

https://hbctraining.github.io/Intro-to-ChIPseq/lessons/05_peak_calling_macs.html

p-value

H0: coin is fair (50% chance for head/tail) Observation: 10 tests, 9 heads

P-value: the probability of observing 9 heads (and more) by random

```
p=1-pbinom(9-1,10,0.5)=0.01074219 (1%)
```

```
<cutoff (often 5% or 1%), reject the HO
```

Conclusion (coin is unfair), the probability of wrong conclusion is around 1%

p=1-pbinom(7-1,10,0.5)=0.171=17%

MACS2

jund@tiger:~\$ macs2 callpeak usage: macs2 callpeak [-h] -t TFILE [TFILE ...] [-c [CFILE [CFILE ...]]] [-f {AUTO, BAM, SAM, BED, ELAND, ELANDMULTI, ELANDEXPORT, BOWTIE, BAMPE, BEDPE]] [-g GSIZE] [--keep-dup KEEPDUPLICATES] [--buffer-size BUFFER SIZE] [--outdir OUTDIR] [-n NAME] [-B] [--verbose VERBOSE] [--trackline] [--SPMR] [-s TSIZE] [--bw BW] [-m MFOLD MFOLD] [--fix-bimodal] [--nomodel] [--shift SHIFT] [--extsize EXTSIZE] [-q QVALUE | -p PVALUE] [--to-large] [--ratio RATIO] [--down-sample] [--seed SEED] [--tempdir TEMPDIR] [--nolambda] [--slocal SMALLLOCAL] [--llocal LARGELOCAL] [--broad] [--broad-cutoff BROADCUTOFF] [--cutoff-analysis] [--call-summits] [--fe-cutoff FECUTOFF] macs2 callpeak: error: argument -t/--treatment is required

```
$ macs2 callpeak -t
bowtie2/H1hesc_Nanog_Rep1_aln.bam \
    -c bowtie2/H1hesc_Input_Rep1_aln.bam \
    -f BAM -g 1.3e+8 \
    -n Nanog-rep1 \
    --outdir macs2
```


https://academic.oup.com/nar/article/42/5/e35/1055374?login=true

https://www.nature.com/articles/nbt.3300

Chip-seq data analysis pipeline

RNA-seq data analysis

RNA-seq

Quality control (qc)

Depending on the quality, you might need to trim the reads

fastp

Optional

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Assemble transcripts

de novo

RNA-Seq reads

All images are from network All images are from network

Quantify gene expression

htseq-count [options] <alignment_files> <gff_file>

	union	intersection _strict	intersection _nonempty
read gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	gene_A	gene_A
gene_A gene_B	gene_A	gene_A	gene_A
gene_A gene_B	ambiguous (both genes with nonunique all)	gene_A	gene_A
gene_A gene_B	ambiguous (both genes withnonunique all)		
read ? gene_A gene_B	alignment_not_unique (both genes withnonunique all)		

All images are from network

Linear regression

Linear regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n$$

How to search the parameters?

1) Brute-force

2) Gradient descent

$$E = \frac{1}{n} \sum_{i=0}^n (y_i - \bar{y}_i)^2$$
 All images are from network

Logistic regression

Support-vector machine (SVM)

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

All images are from network

Linear/non-linear classifier

Kernel function

All images are from network

Decision tree

Random forest

All images are from network

Pitfalls

Regularization

- L1- regularization
- L2-regularization
 - L1 tends to generate sparser solutions than a quadratic regularizer

All images are from network

An example data

https://www.kaggle.com/uciml/pima-indians-diabetes-database

Try to download the data

wget https://filedn.com/IL2xsyY8teiHHTk3wYqUmVu/sdu_summerclass/RNA/diabetes.t xt

An example study (biomarker discovery)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162164

The image is from wiki

Homework 1:

description: you need to build a classifier (e.g., random forest or svm) for the prediction of TB on HIV patients.

steps :

1) download the dataset from the NIH GEO database https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE162164&format=file

2) annotate the patients with its phenotype in other words, some patients are HIV only, the rest are HIV + TB

3) do some basic file reading and processing (convert float values)
4) train a model, could be tricky, the performance could be very bad
5) you need some tricks to minimize the number of features (some feature selection to reduce the feature space), for example, if you find a gene that is not very different from HIV vs HIV+TB, then you know this feature won't be important
6) you train the model and calculate the accuracy, report it
7) write a report (jupyter notebook, detailing each of the steps and results) you need also to tell me what is the biomarker (the most critical feature for the TB+HIV disease)

Clustering methods

Visualize the data

PCA (Essentially, it's linear transformation)

Visualize the data

t-SNE (and UMAP)

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k
eq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)}$$

$$p_{ij}^{2}$$
 $p_{ij} = rac{p_{j|i} + p_{i|j}}{2N}$

$$q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

$$D_{ ext{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \logiggl(rac{P(x)}{Q(x)}iggr).$$

https://en.wikipedia.org/wiki/K-means_clustering#/media/File:K-means_convergence.gif

Clustering methods

Hierarchical clustering

- The maximum distance between elements of each cluster (also called complete-linkage clustering): $\max\{d(x,y): x \in \mathcal{A}, y \in \mathcal{B}\}.$
- The minimum distance between elements of each cluster (also called single-linkage clustering): $\min\{d(x,y): x \in A, y \in B\}.$
- The mean distance between elements of each cluster (also called average linkage clustering, used e.g. in UPGMA):

$$\frac{1}{|\mathcal{A}| \cdot |\mathcal{B}|} \sum_{x \in \mathcal{A}} \sum_{y \in \mathcal{B}} d(x, y).$$

The sum of all intra-cluster variance.

Clustering methods

Density estimator

Leiden clustering (/Louvian clustering)

Modularity is a measure of the structure of networks or graphs which measures the strength of division of a network into modules (also called groups, clusters or communities).

All images are from network

Model selection?

How to choose # of cluster (K) in the K-means?

How to choose the resolution parameter in Leiden clustering ?

Clustering evaluation metrics

Silhouette Score = (b-a)/max(a,b)

Graphical models

What is a graph

Node

Edge

Bayesian network

$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i \mid X_1,...,X_{i-1}) = \prod_{i=1}^n P(X_i \mid Parents(X_i))$$

1) Inference p(x|e)=p(x,e)/p(e)

$$P(x|e) = \alpha \sum_{\forall y \in Y} P(x, e, Y)$$

p(WetGrass=True|Clouldy=True)

(2) Parameter learning

P(A|B)=N(mu,sigma)

3) Structure learning

Bayesian network

C=True=> S={0.1,0.9}

C=True=> R={0.8,0.2}

C=True => W=True

C=True=>S=True, R=True (0.1*0.8) =>0.99 S=True, R=False (0.1*0.2) =>0.9 S=False, R=True (0.9*0.8) =>0.9 S=False, R=False (0.9,0.2) =>0

Markov chain

$$P(X_{n+m} = s | X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = P(X_{n+m} = s | X_{n-1} = i_{n-1})$$

$$P = \begin{array}{ccc} 1 & 2 & 3\\ 1 & 0 & 1 & 0\\ 1/3 & 0 & 2/3\\ 3 & 1/3 & 1/3 \end{array} \right).$$

Diffusion

P=[p11,p12 P21,p22]

P^2=[p11*p11+p12*p21, p11*p12+p12*p22 p21*p11+p22*p21, p21*p12+p22*p22]

$$P^{5} = \begin{pmatrix} 0.246914 & 0.407407 & 0.345679 \\ 0.251029 & 0.36214 & 0.386831 \\ 0.251029 & 0.366255 & 0.382716 \end{pmatrix},$$

$$P^{10} = \begin{pmatrix} 0.250013 & 0.37474 & 0.375248 \\ 0.249996 & 0.375095 & 0.374909 \\ 0.249996 & 0.375078 & 0.374926 \end{pmatrix},$$

$$P^{20} = \begin{pmatrix} 0.2500000002 & 0.3749999913 & 0.3750000085 \\ 0.24999999999 & 0.375000003 & 0.374999997 \\ 0.24999999999 & 0.3750000028 & 0.3749999973 \end{pmatrix}.$$

P^N

• • •

High-order Markov Chain

ACGTACTTCGAGGTTTTTAAACTACTACT

2nd transition matrix

AC->G CT->T GT->A

TA->C

Transition matrix in the upstream region of the following genes

JUND

JUNB

FOS

IRF1

IRF2

ATF2

Hidden Markov Model (HMM)

Initial probabilities Transition probabilities Emission probabilities P(O|S)

Inference

Given Pi, emission matrix, transition matrix => infer hidden states that fit the observation

S S 0.5 SH 0-EM N 0-6 0.2 M C 08 0.4 TM 0.9 0.1 2 - 5

p-value

H0: coin is fair (50% chance for head/tail) Observation: 10 tests, 9 heads

P-value: the probability of observing 9 heads (and more) by random

```
p=1-pbinom(9-1,10,0.5)=0.01074219 (1%)
```

```
<cutoff (often 5% or 1%), reject the HO
```

Conclusion (coin is unfair), the probability of wrong conclusion is around 1%

p=1-pbinom(7-1,10,0.5)=0.171=17%

Mann-whitney U test

HO: the probability of X being greater than Y is equal to the probability of Y being greater than X.

$$U = \sum_{i=1}^n \sum_{j=1}^m S(X_i, Y_j),$$

with

$$S(X,Y) = egin{cases} 1, & ext{if } Y < X, \ rac{1}{2}, & ext{if } Y = X, \ 0, & ext{if } Y > X. \end{cases}$$

How to calculate U-statistics

L: Li lei

H: Han meimei

Result:

LНННННЦЦ**ЦЦ**

U1= U2=

L=[1,3,7,8] H=[2,1,9,6]

$$U=\sum_{i=1}^n\sum_{j=1}^m S(X_i,Y_j),$$

with

$$S(X,Y) = egin{cases} 1, & ext{if } Y < X, \ rac{1}{2}, & ext{if } Y = X, \ 0, & ext{if } Y > X. \end{cases}$$

Fold change

X=[2,3,4,5]

Y=[5,6,8,12]

х->у

If mean(Y)>mean(X):

```
Fold change=mean(Y)/mean(X)
```

Else:

```
Fold change=-1* mean(X)/mean(Y)
```

Binomial test

Background frequency: 0.5 20 invites Yes: 15 times 20: 5 times

P-value?

Single-cell genomics

Cells: the building blocks of life

Figure 1-17 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)

Why we need the single-cell?

Human Cells

Build a google map of human body

Better disease diagnosis and treatment

Cell Atlas Initiatives

There are 37 trillion cells The Human Cell Atlas will create a 'Google map' of the human body. This is a global effort. 482 cientis countrie BRAIN / NERVOUS SYSTEM INNER EAR MMUNE SYSTEM THYMUS CELLS 185 22 tissues projects LUNG HEART SPI CEN BONE DEVELOPMENTAL TISSUES BONE SKIN CANCER HUMAN CELL ATLAS MARCH 2018

Human Cell ATLAS

HuBMAP

Single-cell data is accumulating fast

Cell Count by Release Date

Single-cell vs. Bulk Sequencing

Single-cell

Bulk

Single-cell applications in biomedical studies

 [1] Engblom et al. Science. 2017 [2] Fadrosh et al. Nat Commun. 2016 [3] Treutlein et al. Nature. 2014
 [4] Zheng et al. Cell. 2017 [5] Quadrato et al. Nature, 2017 [6] Heath et al. Nat Rev Drug Discov. 2016 All images retrieved from Illumina websites

Developmental Trajectory

Developmental trajectory inference methods

Farrell J. et al. Science,

Machine learning challenges?

- ★ Curse of dimensionality
- ★ High noise level
- ★ Enormous heterogeneity
- \Rightarrow specific computational challenges:
- Reducing the data dimensionality
- Identifying sub-population (clustering problems)
- Reconstructing the cellular trajectories

Curse of dimensionality

Analyzing of the high dimensional data often suffers from the curse of dimensionality

The searching space increases exponentially Neighbors of each data point also increase exponentially Distances are on longer informative

$$\lim_{d o\infty} E\left(rac{\operatorname{dist}_{\max}(d) - \operatorname{dist}_{\min}(d)}{\operatorname{dist}_{\min}(d)}
ight) o 0$$

C1: Most importantly, human eyes can't see anything beyond 3D

Suppose your boss gives you a single-cell dataset (10k cells by 20k genes), and told you that he wants to see what it looks like.

What is your first thought?

$$rgmin_F |x-F(x)|$$

Dimensionality reduction

- Linear F
 PCA
- Non-linear F
 t-SNE (U-MAP)
 Auto-encoder

Non-linearly separable data

https://s3-us-west-2.amazonaws.com/articles-dimred/pca/animation.webm

Find a linear transformation to project the data from HD to LD space that minimize the projection error.

$$\sum_{i=1}^n ||x_i-Px_i||^2$$

P represents the transformation matrix

t-SNE

1) Measuring the distance in higher dimensional space (Gaussian distribution)

$$p_{j\,|\,i} = rac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k
eq i}\exp(-||x_i - x_k||^2/2\sigma^2)}$$

$$p_{i,j=rac{p_{i\mid j}+p_{j\mid i}}{2N}}$$

$$\sum_{i,j} p_{i,j} = 1$$

2) Measuring the distance in lower dimensional space (long-tail student t distribution)

$$q_{ij} = rac{\left(1 + ||y_i - y_j||^2
ight)^{-1}}{\sum_k \sum_{l
eq k} \left(1 + ||y_k - y_l||^2
ight)^{-1}}$$

Why not using Gaussian distribution in LD too?

The Gaussian distribution in 2D space will force all time points "together" => crowding problem

This can be mitigated by the "long-tail" student t-distribution

(3) The locations of the points in the LD space (y) are determined by minimizing the (non-symmetric) Kullback–Leibler divergence of the distribution P from the distribution Q.

$$C = KL(P||Q) = \sum_{i
eq j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

Then use the gradient descent to search the $y_i\,$ that minimize the KL divergence C.

Diffusion map

- 1) Calculate the transition probability matrix M(i,j) (e.g., base on the distance and a chosen kernel).
- 2) Diffusion $M^t(i,j)$

$$M^{2} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\approx M^{2} (1, 1) = a_{11} a_{11} + a_{12} a_{21} + a_{13} a_{32} \end{bmatrix} \begin{bmatrix} a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Autoencoder

Input

Output

RECAP 1

- 1) Dimensionality reduction techniques are commonly used in single-cell genomics
- 2) Popular techniques:

Linear: PCA (Linear), Non-linear: Classical: t-SNE/UMAP, Neuron network: Autoencoder

3) It is usually the first step of the high-dimensional data analysis

C2. Single-cell data is very noisy

The single-cell dataset (10k cells by 20k genes) data is very noisy You want to "fix" or "clean" the data, what would you do?

Single-cell data "fixing"

MAGIC[1] is a popular method to fix the missing values (e.g., dropout) in single-cell

[1] Dana Pe'er et al. Cell, 2018

 $M^t(i,j)$

represents the probability that a random walk of length *t* starting at cell *i* will reach cell *j*, thus we call *t* the "diffusion time."

 $M\left(i,j
ight) =$

 $A\left(i,j
ight)=e^{-\left(rac{Dist\left(i,j
ight)}{\sigma}
ight)^{2}}$

Markov transition probability from i -> j

$$D_{imputed} = M^t * D$$

Single-cell data denoising

Guess what is the most commonly used track?

=> remove the "bad cells"

How?

- 1) Remove cells with low # of expressing genes
- 2) Remove cells with high % of mitochondrial reads

RECAP 2

- 1) Single-cell imputation (e.g., MAGIC ->data fixing)
- 2) Single-cell data cleaning (e.g., filtering -> denoising)
- 3) Garbage in => Garbage out

Always try to clean the data first before the actual modeling/analysis

C3. Single-cell data is enormously heterogeneous

The single-cell dataset (10k cells by 20k genes) data is heterogeneous You want to identify all sub-populations, what would you do?

Clustering

K-Means

Assignment:

$$S_i^{(t)} = ig\{ x_p : ig\| x_p - m_i^{(t)} ig\|^2 \leq ig\| x_p - m_j^{(t)} ig\|^2 \; orall j, 1 \leq j \leq k ig\},$$

Assign the cell to the closest cluster (nearest centroid).

Update:

$$m_i^{(t+1)} = rac{1}{\left|S_i^{(t)}
ight|} \sum_{x_j \in S_i^{(t)}} x_j$$

From Wiki page

Louvian/Leiden

$$Q = \frac{1}{2m} \sum_{i,j} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j),$$

where

Aij is the weight of the edge between i and j.

ki is the sum of weights of the vertex attached to the vertex I, also called as degree

```
of the node
```

ci is the community to which vertex i is assigned

 $\delta(x,y)$ is 1 if x = y and 0 otherwise

 $m = (1/2)\sum_{ij} Aij$ i.e number of links

1st step: A greedy algorithm is applied to search for the maximal Q (moving a node from community i to all its neighbors) => guarantee a local optical.

2nd step: update the weight between communities.

Such passes are repeatedly carried out until there is no more change in the cluster, and a maximum of modularity is achieved.

Supervised neural network for clustering

$$Loss = \sum_{i \, \in \, D} {\left| \left| y_i - F\left(x_i
ight)
ight| }
ight|^2$$

Variational autoencoder

How to annotate cluster?

Now, you got the clusters. But, what are those clusters? (e.g., what cell types they are? What set of genes they are expressing)

OPEN QUESTION

A few existing solution:

- (1) Use marker genes
- (2) Use functional analysis (e.g., GO enrichment)
- (3) Compare with expression data with known cell types

RECAP 3

- 1) Clustering is the most widely used method to identify sub-populations
- 2) Popular methods: K-means, SOM, Louvian, Leiden, ANN (supervised)
- 3) No good ways to annotate clusters yet.

C4. Reconstructing trajectories from Single-cell data

How to infer the cell dynamics (the cellular state change over time) from single-cell data (often time-series)

Monocle

$$\min_{\mathcal{G} \in G_b} \min_{f_{\mathcal{G}} \in \mathcal{F}} \min_{z} \sum_{i=1}^{N} ||\mathbf{x}_i - f_{\mathcal{G}}(\mathbf{z}_i)||^2 \\ + \frac{\lambda}{2} \sum_{(V_i, V_j) \in \varepsilon} b_{i,j} ||f_{\mathcal{G}}(\mathbf{z}_i) - f_{\mathcal{G}}(\mathbf{z}_j)||^2$$

Qiu et al. Nature Methods, 2017

PAGA

- 1) Graph partitioning and abstraction
- 2) Pseudo-time estimation
- 3) Preserving Graph topology across resolutions

Wolf et al. Genome Biology, 2019

RECAP 4

- 1) Trajectory methods are employed to interrogate the dynamic cellular transition
- 2) Popular methods: Monocle, Seurat, etc.

C5. Reconstructing the regulatory networks underlying the trajectories How to infer the transcription factors and pathways that dictate the cellular dynamics

GENIE3

 $\mathbf{x}_{k}^{-j} = (x_{k}^{1}, \dots, x_{k}^{j-1}, x_{k}^{j+1}, \dots, x_{k}^{p})^{\mathrm{T}},$ **Expression data** Exp₁ Exp₂ Exp₂ we assume that we can write: Exp_M Gene, Gene, Gene Gene Learning f Gene ranking $x_k^j = f_j(\mathbf{x}_k^{-j}) + \varepsilon_k, \forall k$ Tree ensemble. LS1 $^{\sim}$ $\cdot \sqrt{2}$ Interaction ranking Tree ensemble. LS² ... $\sum_{k=1}^{N} (x_k^j - f_j(\mathbf{x}_k^{-j}))^2$ Tree ensemble Find f to minimize Output gene Input gene

SIMPLE BUT POWERFUL (Champion of the DREAM Challenge)

SCDIFF

Ding et al. Genome Research 2019

RECAP 4

- 1) Trajectory methods are employed to interrogate the dynamic cellular transition
- 2) Popular methods: Monocle, Seurat, etc.

OPEN DISCUSSION

Any new ideas to reduce the data dimensionality? Any new strategies to cluster the data points? Any new methods to infer the gene regulatory network?

Infer cell-cell interactions from pseudotime ordering of single-cell data

Jun Ding Assistant professor Department of Medicine Department of Biomedical Engineering McGill University

Why cell-cell interaction inference matters?

Armingol, Erick, et al. "Deciphering cell–cell interactions and communication from gene expression." *Nature Reviews Genetics* 22.2 (2021): 71-88.

Cell-cell interactions play critical roles in cancer progression

Müller, Luise, et al. "Bidirectional crosstalk between cancer stem cells and immune cell subsets." Frontiers in immunology (2020): 140.

Existing methods?

Most existing methods are based on Expression thresholding

Sample or organ	Key input	Scoring	CS value	CCC score	Validation	Study focus	1
Cell development							
Haematopoietic cells (human)	Microarray; LRIs	Expression thresholding	Binary	No score	Functional validation	Role of CCC between differentiated haematopoietic cells and HSCs in fate decisions	
Brain (mouse embryonic cortex)	Microarray; LRIs	Expression thresholding	Binary	No score	Functional validation	Role of microenvironment in self-renewal versus differentiation decision of neural precursor cells during neurogenesis	
Liver and iPS cells (human)	scRNA-seq; LRIs	Expression thresholding	Binary	Normalized sum of CS	Functional validation	3D liver bud organoid from iPS cells to characterize CCC shaping hepatogenesis	
Placenta (human)	scRNA-seq; LRIs	Expression thresholding	Binary	No score	Functional validation	CCI in the fetus-placenta interface before and after decidualization	
Brain (mouse)	Bulk RNA-seq; LRIs	Expression thresholding	Binary	Sum of CS	Colocalization	Ligand-receptor pathways active during neural development; CCC between neural, vascular and microglial cells	
iPS cells (mouse)	scRNA-seq; LRIs	Expression product	Continuous	Sum of CS	Functional validation	CCC at the beginning of differentiation	
Bone marrow (mouse)	scRNA-seq; LRIs	RNA-Magnet	Continuous	No score	Colocalization	CCC and interactions between bone marrow cells	
Tissue interactions							
Multiple lineages (human)	scRNA-seq; LRIs	Expression thresholding	Binary	Sum of CS	None	CCC between multiple cell lineages	
Lungs (human)	popRNA-seq; LRIs	Expression thresholding	Binary	Sum of CS	Colocalization functional validation	Signals sent by mesenchymal cells in lungs that are key for self-renewal of epithelial progenitors after tissue injury	
Heart (mouse)	scRNA-seq; LRIs	Expression thresholding	Binary	Sum of CS	Functional validation	Transcriptional profiles of non-myocyte cells in heart and their CCC	
Lungs (mouse)	scRNA-seq; LRIs	Expression correlation (Spearman)	Continuous	No score	Expression; colocalization functional validation	CCC between and within immune and non- immune cells during development	
Immune system and structural cells (mouse)	Low-input RNA-seq; LRIs	Differential combinations	Binary	Odds ratios	Functional validation	Role of structural cells in immune responses	
Heart (mouse)	scRNA-seq; LRIs	Differential combinations	Binary	Sum of CS	Expression; colocalization functional validation	CCC of cardiomyocytes and non- cardiomyocytes in human heart in health and under failure	
Placenta (human)	scRNA-seq; LRIs	CellPhoneDB	Continuous	No score	Colocalization	Key ligand-receptor pairs based on subunit architecture; CCC at maternal- fetal interface	
Tumour microenvironm	ent						
Melanoma (human)	scRNA-seq; LRIs	Expression thresholding	Binary	Sum of CS	None	CCI network of isolated cells	
HNSCC (human)	scRNA-seq; LRIs	Expression thresholding	Binary	No score	Colocalization	CCC in patients with HNSCC generated by HPV or environmental carcinogens (HPV negative)	
Five cancer types (mouse)	scRNA-seq; LRIs	Expression product	Continuous	No score	None	CCC within a tumoural microenvironment	
Nine cancer types (human)	Microarray; LRIs	Expression correlation (Pearson)	Continuous	No score	None	Correlation between autocrine signalling pathways and mRNA levels of ligands and receptors	
Lungs (human)	scRNA-seq; LRIs	Differential combination; expression thresholding	Binary	No score	Functional validation	Tumour-stroma CCC in lung cancer; introduced CCCExplorer	
Ovary (human)	Microarray; LRIs; downstream target genes	Differential combination; expression thresholding	Binary	No score	Expression; functional validation	CCC between stromal and ovarian cancer cells	
Head and neck and immune system (human)	scRNA-seq; LRIs; downstream target genes	NicheNet	Continuous	No score	None	Prediction of ligand-target links between interacting cells; tested on HNSCC data set	

CellphoneDB

protocols

PROTOCOL https://doi.org/10.1038/s41596-020-0292-x

CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes

Mirjana Efremova¹, Miquel Vento-Tormo², Sarah A. Teichmann^{1,3} and Roser Vento-Tormo^{1*}

Limitations?

1) Information loss if only using the mean expression

2)Not all cells in the cluster are the same (Most biological processes are continuous)

Mean expression (ligand, receptor) based methods score the above 4 patterns the same. But, they are not!

How to address this limitation?

- Mean expression (Ligand, Receptor)=> two scalar value
- VS.
- Temporal expression (Ligand, Receptor) => two vectors

Solution: Integrate time/pseudo-time information with gene expression to infer Cell-cell interactions

Impact of different sizes of the sliding window

Window Size

Calculating p-value for all L-R pairs

randomization => null distribution of interaction score

⇒ right-tail probability => p-value

How to infer the cellular trajectory? scdiff

Ding J et al. Genome Research, 2018

How to infer the cellular trajectory? cshmm

Lin, Chieh, and Ziv Bar-Joseph. "Continuous-state HMMs for modeling time-series single-cell RNA-Seq data." Bioinformatics 35.22 (2019): 4707-4715.

Selecting paired clusters

- Most other methods infer cell-cell interactions between all possible clusters
- Trasig: Cells can only interact if both are active at the same time

For example, in a developmental process, cells at day E1 is unlikely to interact with cells profiled at day E16.

Temporal alignment

Is the time in each path of the interaction partners the same? What if they are not? Alignment!

 $t \tau_j(t) = \frac{(t-b_j)}{a_j}$

Scaling and shifting

Trajectory and pseudotime inferred by other methods

Street, Kelly, et al. "Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics." *BMC genomics* 19.1 (2018): 1-16. Cao, Junyue, et al. "The single-cell transcriptional landscape of mammalian organogenesis." *Nature* 566.7745 (2019): 496-502.

Trajectory on liver organoid differentiation data

10.2 M

Mo R. Ebrahimkhani, MD Associate professor University of Pittsburgh

Cell type annotation

SCT

FGG

ASGR1

COL1A1

2

Cell-cell interactions for the liver organoid data

Temporal expression patterns for identified L-R pairs

Ligand-receptor interaction predictions of interest for functional studies

Sending and receiving cell populations

Red: sender, Blue: Receiver

Experimental validation -1

CD34: hepatic progenitor cells

Experimental validation-2

VEGF inhibitor

Experimental validation-3

Comparison with other methods-1

Cabello-Aguilar, Simon, et al. "SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics." Nucleic acids research 48.10 (2020): e55-e55.

Efremova, Mirjana, et al. "CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes." *Nature protocols* 15.4 (2020): 1484-1506.

Comparison with other methods-2

SingleCellSignalR CellphoneDB

interacting pair

Comparison with other methods-3

Trasig works with other pseudotime inference methods(Slingshot)

oligodendrocyte cell differentiation data [https://zenodo.org/r ecord/1443566#.Yh XJXYzMJhF]

Saelens, Wouter, et al. "A comparison of single-cell trajectory inference methods." Nature biotechnology 37.5 (2019): 547-554.

Trasig works with Monocle3

hepatoblast differentiation data:

Yang, L. et al. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology

66, 1387–1401 (2017)

16 CellPhoneDB

interacting pair

CellPhoneDB

0 -

N -

m -

LΩ -

Comparison with another L-R database

Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A. & Forrest, A. R. Predicting cell-to-cell communication networks using natmi. Nat. Commun 11, 1–11 (2020).

regulation of endothelial cell migration regulation of endothelial cell proliferation vascular endothelial growth factor receptor binding vascular endothelial growth factor receptor signaling pathway vascular endothelial growth factor signaling pathway vascular endothelial growth factor-activated receptor activity vascular process in circulatory system venous blood vessel development -

Thanks

Collaborators

CMU

Ziv Bar-Joseph

Dongshunyi (Dora) Li

Mo R. Ebrahimkhani

Funding

THREE LAKES FOUNDATION

Integration of multi-omics data for the discovery of novel regulators that modulate biological processes

Jun Ding Meakins-Christie Laboratories Department of Medicine Department of Biomedical Engineering McGill University 02/10/2022

Centre universitaire de santé McGill Institut de recherche

McGill University Health Centre Research Institute

Cellular dynamics in various biological processes

Cell differentiation & reprogramming

Schiebinger, Geoffrey, et al. "Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming." *Cell* 176.4 (2019): 928-943.

McDonough, John E., et al. "Transcriptional regulatory model of fibrosis progression in the human lung." *JCI insight* 4.22 (2019).

How to identify the regulators that dictate the cellular dynamics in those biological processes for "interventions"?

Regulators in Gene regulatory networks (GRN)

GRN inference

Zhou, Qing, et al. "A gene regulatory network in mouse embryonic stem cells." Proceedings of the National Academy of Sciences 104.42 (2007): 16438-16443.

Regression/Correlation/ODE based GRN inference

Huynh-Thu, Vân Anh, et al. "Inferring regulatory networks from expression data using tree-based methods." *PloS one* 5.9 (2010): e12776.

Probabilistic Graph based GRN inference

DREM

RNA-seq vs. Multi-omics

Lee, Jeongwoo, Do Young Hyeon, and Daehee Hwang. "Single-cell multiomics: technologies and data analysis methods." *Experimental & Molecular Medicine* 52.9 (2020): 1428-1442.

Multi-omic Variation Epigenome Healthy Transcriptome Proteome Disease Metabolome

Multi-omics: Complementary views from different perspectives

Sun, Yan V., and Yi-Juan Hu. "Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases." *Advances in genetics* 93 (2016): 147-190. Interactive Dynamic Regulatory Events Miner (IDREM)

Model Overview

IOHMM model M =(H,E, Θ , Ψ)

H,E denote the nodes and edges -> model structure.

 Θ, Ψ represent the parameters for calculating the the emission and transition probabilities

-> model parameters under current structure

 Θ denote the parameters for a gaussian model, which maps the **gene expression** at each node => emission probability.

 Ψ denote the parameters for a regression model, which maps the input (**TF-DNA binding**) => transition probability (e.g. 0.95, 0.05 shown in D).

Model learning

- (1) Randomly split all genes into a train set (75%) and a test set (25%).
- (2) Start searching the structure from a single chain.

(3) Under current structure (H,E), Use Baum-welch algorithm to find the model parameters (using train set) which present the maximal likelihood on test set r(G_test|M). M is the current model M =(H,E, Θ , Ψ).

(4) Random Split the path under certain constraints (e.g. no more 3 edges coming out from node). Then calculate the score for the new model $r(G_test|M_new)$. M_new is the model after the splitting.

(5) We keep doing the above process until the score converges.

Then, we got the final Structure. Finally, we used all genes to estimate the model parameters => Final Model M.

Score calculation

$$r(G|M) = \sum_{g \in G} \log \sum_{q \in Q} \prod_{t=1}^{n-1} f_{q(t)(o_g(t))} \prod_{t=1}^{n-1} P(H_t = q(t)|H_{t-1} = q(t-1), I(g,t))$$

The first product denotes the emission probability and the second product represents the transition probability. The inner sum is over all paths and the outer sum is over all genes in G. \$I(g, t)\$ is the dynamic input prior learned by integrating all omics data.

$$P(H_t = q(t)|H_{t-1} = q(t-1), I(g,t))$$

This probability can be calculated using a regression model

Where the omics integration happens

Integration of TF-DNA interaction data

$$RegValue(TF_x, time_z) = |expression(x, z + 1) - expression(x, z)|$$

Then, we normalize all RegValue to [0,1] using the logistic function

$$f_w(x) = \frac{1}{1 + e^{-xw}}$$

To determine the sign of the regulation RegDirection (x,y,z) (Note: if the original TF-DNA file already has this information, just use it directly)

If TF up, target up (activation 1) If TF up, target down (repression -1) If TF down, target up (repression -1) If TF down, target down (activation 1)

The final TF-DNA interaction value :

Interaction(TFx,geney,timez)=RegValue(x,z)*RegDirection(x,y,z)*TFDNA(x,y,z)

Where, TFDNA (x,y,z) is the binary to represent whether TF x is binding to gene y at time point z.

Integration of miRNA data

miRNA information was treated as a special type of "TF", which can only repress the target expression. On the other hand, TF can either activate or repress target expression.

Integration of proteomics and PPI

It's not accurate to use gene expression level to represent the level of corresponding TF. Besides, TF regulates the gene expression via a "impact" on RNA polymerase (Pre-initialization complex-PIC). The impact was by a series of Protein-protein interactions.

$$TF_{x} = \frac{1}{|Y|} \sum_{\{y \in Y\}} ProteinLevel_{x} * ProteinLevel_{y} * PPI(x, y)$$

Y : interacting proteins of x; Protein level all normalized to [0,1]

E.g.,

Case A: TF x is highly expressing, but none of its known interacting proteins are expressing.

Case B: TF y is expressing and so do its interacting proteins. TF x and y are both known to regulate gene z. In this specific case, TF x is more likely active compared with

Integration of methylation data

In the main framework, the TF-DNA data is static, which means it's not changing during the process. This is definitely not the case in reality. Here, we can use the methylation data to get the dynamic TF-DNA binding information. The methylation in the promoter region will silence the downstream gene expression [pubmed 24555846]. Detail steps:

- (1) Mapping the methylation reads and calling the methylation peaks.
- (2) Compare the peaks with genomic location of TSSs of all genes.
- (3) If there are peaks found in the promoter region (within upstream 10k of gene TSS), the promote of gene get methylated and we will modify all TF-DNA binding related to this gene.

The transition model will be impacted by the dynamic TF-DNA binding. As the transition model and emission model are tangling with each other, the emission model will be also impacted.

IDREM software interface

BREM - Dynamic Regulatory Events Miner	↔			×
1. Data Input:				
TF-gene Interaction Source: User Provided				
TF-gene Interactions File:		Browse	ə	12
Expression Data File:		Browse	e	
Saved Model File:		Browse	ə	8
View TF-gene Data 🛛 View Expression Data	8			
Spot IDs in the data file 🛛 🕾 Repeat Data	8			
○ Log normalize data				
2. Gene Annotation Input:				
Gene Annotation Source: User provided				
Cross Reference Source: User provided				
Gene Annotation File:		Browse	ə	12
Cross Reference File:		Browse	ə	2
Download the latest: Annotations Cross References Ontology				
3. Options:				
E= Options		اممم		
	iain F	Panel		
4. Execute:	iain F	anei		
4. Execute:		anei		
4. Execute:		anei		
4. Execute:		anei		
4, Execute: Execute © 2017, Carnegie Mellon University. All Rights Reserved.		Paner		×
4. Execute:		Paner		×
4. Execute:	2		:	×
4. Execute:	Model Se		:	×
4. Execute: Execute	Model Se	election Optio	ons	×
4. Execute:	Model Se	election Optio	ons 😰	×
4. Execute:	Model Se	election Optio	ons 😰	×
4. Execute:	Model Se	election Optio	ons 😰	×
4. Execute: Execute	Model Se	election Optio	ons 😰	×
4. Execute:	Model Se	election Optio	ons 😰	×

🕌 Options

Methylation Option Proteomics Option Filter	g Options Search Options Model Selection Options
miRNA-Gene Interaction Source: User Provided	 ✓
microRNA-Gene Interaction File:	🖨 Browse
microRNA Expression Data File:	🕾 Browse
🖻 m	RNA Repeat Data
🔿 Log normalize data 🔘 Normali	e data 🔾 No normalization/add 0 🛛 🕅
Filter miRNA with no express	on from regulator data: 🔲 🔣
miRNA Par	el

🚳 Options						×
Gene Annotations	GO Analysi	s DECOD Options	Expression Scaling Options	microRNA Option		
Methylation Opt	ion	Proteomics Option	Filtering Options	Search Options	Model Selection Optio	ns
Only Use Proteo		TFs 🔲 Use Proteomic	s data for all Proteins 🛛 Do	Not Use Proteomics da	ta 📓	
Proteonines Data The	1				La browse	_
📾 Repeat Protei	omics Data Fi	le O Log normalize	e data 🔘 Normalize data 🤇) No normalization/add (
Protein-Protein Inter	raction File:				Browse	
		Proteomic Panel	cs PPI			

IDREM application in lung development

Gene expression

The gene expression is in FPKM format with 15 time points.

e16.8	e18.5	p0.5	p1.5	p2.5	p4	p5	р7	p10	p13.5	p15	p19	p23	p28	
-------	-------	------	------	------	----	----	----	-----	-------	-----	-----	-----	-----	--

> miRNA expression

The miRNA expression data is from NanoString technologies- ncount expression. Based on the manual from NanoString technologies, it needs to be normalized. http://www.nanostring.com/media/pdf/MAN nCounter Gene Expression Data Analysis Guidelines.pdf

Here, we used the housekeeping genes to do the normalization.

In the miRNA expression dataset, they offered the expression for a few housekeeping genes: Actb,B2m,Gapdh,RpI19

The normalization steps:

A. First calculate the geometric mean of the expression of these housekeeping genes for each lane (sample)

$$g_{sample} = (\prod_{i \in H} g_i)^{(1/|H|)}$$

> Proteomics data

There are 15 time points for the proteomics data

e1	16.5	e18.5	p0.5	p1.5	p2.5	p4	р5	р7	p10	p13.5	p15	p19	p23	p28	
----	------	-------	------	------	------	----	----	----	-----	-------	-----	-----	-----	-----	--

Summary Table

Time Point	e16.5	e18.5	p0.5	p1	p1.5	p2.5	p4	p5	p7	p10	p13.5	p15	p19	p23	p28
gene expression	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
miRNA expression	0	Х	0	0	0	0	0	0	0	0	0	0	0	0	0
proteomics	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Methylation data

we have the methylation for the following 6 time point: p0.5, p2.5,p7,p10,p19,p28

By combined all the above datasets, we decided to use the following 14 time points.

Ding, Jun, et al. "Integrating multiomics longitudinal data to reconstruct networks underlying lung development." *American Journal of Physiology-Lung Cellular and Molecular Physiology* 317.5 (2019): L556-L568.

Experimental validation for the novel regulators (miR-539 and miR-590) from IDREM

McDonough, John E., et al. "Transcriptional regulatory model of fibrosis progression in the human lung." *JCI insight* 4.22 (2019).

Summary -I

- 1) Graphical models are very flexible for data integration (particularly the Input-output hidden markov)
- 2) Integration of multi-omics data could lead to the discovery of novel regulators for various biological processes
- Interactively visualized model could promote novel biological discoveries

Multi-omic model that identifies novel drugs against COVID-19 SARS-Cov2 modified SDREM analysis DREM is useful, but several questions remain ...

Response to infection Cell membrane What happened here? -Nucleus 198

SDREM: Extending DREM to model signaling networks

Inputs:

- Condition specific inputs:
 - Time series expression data following treatment
 - (A few) receptors interacting with invader or activated by condition of interest
 - Phosphorylation data
 - Protein level data
- General interaction data (not necessarily from the same condition):
 - Protein-DNA interactions
 - Motif information
 - Protein interaction networks

Inferring signaling pathways

Iterative method for reconstructing dynamic signaling and regulatory networks

Identify TFs actively regulating gene expression

Determine which active TFs are well-connected in the PPI network?

mSDREM model

UBE2

CANX

PAFI

NXE1

Red – Source proteins (interacting with virus protein directly) Green – Inferred signaling proteins CBX5 Blue – TFs

Diamond shape – Top phosphorelated protein

CLIPAPVRLARPABTLE3WASHCAPPIL3G3BP1G3BP2NEU1FBLCYBSR3OS9NEK9VPS11MYCBP2AKAP9ZC3H7AERGIC1HMOX1STOTTIMM29CLCC1CNTRLPL0D2PKP2FBN1PMPCASIRT5GRIPAP1GOL1MARK2TBK1TIMM10RAB7APRIM2MARK1RBM41RAB10PMPCBINTSLC9A3R1PCNTCDKSRAP2CEP135NDUFB9IMPDH2PRIM1ANO6CSDE1NUFPOL42CEP250NUP244USP13NUP58RAB1APOLA1NUP54BCKDKARTOMM70RAB24MRPS2TCF12GOLGA2FAM98ANPTX1RIPK1SPARTNUF										
CYBSR3OSSNEKSVPS11MYCBP2AKAP9ZC3H7AERGIC1HMOX1STORTIMM29CLCC1CNTRLPLOD2PKP2FBN1PMPCASIRTSGRIPAP1GOLMARK2TBK1TIMM10RAB7APRIM2MARK1RBM41RAB10PMPCBINTSLC9A3R1PCNTCDKSRAP2CEP13SNDFB5IMPDH2PRIM1AN06CSDE1NDFPOLA2CEP250NUP214USP13NUP58RAB1APOLA1NUP54BCKDKARTOMM70RAB2AMRPS2TCF12GOLGA2FAM9BANPTX1RIPK1SPARTNUP	MAT2B	AP 2M 1	CHMP2A	BRD 4	GRPEL1	RAE1	ATP6AP1	TAPT 1	PITR M1	HDAC 2
TIMM29 CLCC1 CNTRL PL002 PKP2 FBN1 PMPCA SRT5 GRIPAP1 GOL MARK2 TBK1 TIMM10 RAB7A PRIM2 MARK1 RBM41 RAB10 PMPCB INT SLC9A3R1 PCNT CDKSRAP2 CEP135 NDUFB9 IMPDH2 PRIM1 AN06 CSDE1 NUF POLA2 CEP250 NUP24 USP13 NUP58 RAB1A POLA1 NUP54 BCKDK AR TOMM70 RAB24 MRPS2 TCF12 GOLGA2 FAM98A NPTX1 RIPK1 SPART NUP	CLIP4	PVR	LARP 4B	TLES	WASHC4	PPIL3	G 3BP 1	G 3BP 2	NEU1	FBLNS
MARK2 TBK1 TIMM10 RAB7A PRIM2 MARK1 RBM41 RAB10 PMPCB INT SLC9A3R1 PCNT CDK5RAP2 CEP135 NDUFB9 IMPDH2 PRIM1 AN06 CSDE1 NDF POLA2 CEP250 NUP24 USP13 NUP58 RAB1A POLA1 NUP54 BCKDK AR TOMM70 RAB24 MRPS2 TCF12 GOLGA2 FAM98A NPTX1 RIPK1 SPART NUP	CYB5R3	0.59	NEK9	VPS11	MYCBP2	AKAP9	ZC 3H7A	ERGIC1	HM0X1	STOML2
SLC9A3R1 PCNT CDKSRAP2 CEP13S NDUFBS IMPDH2 PRIM1 AN06 CSDE1 NDF POLA2 CEP250 NUP214 USP13 NUP58 RAB1A POLA1 NUP54 BCKDK AR TOMM70 RAB2A MRPS2 TCF12 GOLGA2 FAM9BA NPTX1 RIPK1 SPART NUP	TIMM29	CLCC1	CNTRL	PLOD2	PKP 2	FBN1	PMPCA	SIRT 5	GR IPA P1	GOLGB1
POLA2 CEP250 NUP214 USP13 NUP58 RAB1A POLA1 NUP54 BCKDK AR TOMM70 RAB24 MRPS2 TCF12 GOLGA2 FAM98A NPTX1 RIPK1 SPART NUP54	MARK2	ТВК1	TIMM10	RAB7A	PRIM2	MAR K1	RBM41	RAB10	PMPCB	INTS4
TOMM70 RAB2A MRPS2 TCF12 GOLGA2 FAM9BA NPTX1 RIPK1 SPART NUF	SLC9A3R1	PCNT C	CDK5RAP2	CEP135	NDUFB9	IMPDH2	PRIM1	AN06	CSDE 1	NUP62
	POLA2	CEP250	NUP214	USP13	NUP58	RABIA	POLA1	NUP54	BCKDK	ARF6
FOXRED2 ZNF318 TIMM10B IDE EXOSC8 MARK3 ERC1 SBN01 DPH5 REE	TOMM70	RAB 2A	MRPS2	TCF12	GOLGA2	FAM98A	NPTX1	RIPK1	SPART	NUP98
	FOXRED2	ZNF318	TIMM10B	IDE	EXOSC8	MAR K3	ERC 1	SBN01	DPH5	REEPS
DCAF7 NLRX1 AP3B1 SCCPDH CRTC3 TLE1 NUP88 NINL TIMM9 NUT	D CAF7	NLRX1	AP3B1	SCCPDH	CRTC3	TLE 1	NUP88	NINL	TIMM9	NUTF 2
PRKAR2B PLEKHAS BRD2 TBKBP1 PLAT PTBP2 SLU7 NIN GORASP1 LO	PRKAR2B	PLEKHAS	BRD2	ТВКВР1	PLAT	PTBP2	SLU7	NIN	GORASP1	LOX
PDE4DIP RAP1GDS1 AP2A2 REEP6 TRMT1 MDN1 RDX	PDE 4DIP	RAP 1GD S1	AP2A2	REEPG	TRMT1	MDN 1	RDX			

Detailed results can available at: https://filedn.com/IL2xsyY8teiHHTk3wYgUmVu/re sults/BU RNA Proteomics/

The IDREM model of the RNA-seq + Proteomics data

Interactive viewer:

https://filedn.com/IL2xsyY8teiHHTk3wYa UmVu/results/BU_RNA_Proteomics/cpm. csv.log.merged.csv_viz/idrem_result.html

Using the tool you can explore gene expression levels, top TFs and the paths they regulate and protein levels of all genes.

Please refer to the manual (bottom of the panel) for a description of the iDREM model.

Top 50 proteins from msdrem single knock-out

1	Gene	Source	Top Phosphorylated	
2	ATF2	N	Y	0.5338
3	NUP98	Y	Y	0.2926
4	HMGA2	N	Y	0.166
5	HDAC2	Y	Y	0.1596
6	SMARCA4	N	Y	0.1076
7	MYC	N	Y	0.0832
8	H2AFX	N	Y	0.0736
9	PKP2	Y	Y	0.069
10	EP300	N	Y	0.0586
11	CREBBP	N	N	0.0414
12	HDGF	N	Y	0.04
13	MATR3	N	Y	0.039
14	EEF2	N	Y	0.038
15	ZNF318	Y	Y	0.038
16	CHD4	N	Y	0.0342
17	JUN	N	N	0.033
18	HMGA1	N	Y	0.027
19	KRT18	N	Y	0.027
20	FOS	N	N	0.025
21	RELA	N	N	0.025
22	NCL	N	Y	0.0246
23	SUMO2	N	N	0.0240
24	HSF1	N	N	0.024
25	UBE2I	N	N	
	CREB1	N	N	0.022
26			112	0.021
27	HSPB1	N	Y	0.021
28	SSRP1	N	Y	0.021
29	STAT3	N	N	0.021
30	RAB7A	Y	N	0.0204
31	CTNNB1	N	N	0.02
32	PML	N	Y	0.02
33	RB1	N	N	0.02
34	CSNK2A1	N	N	0.019
35	JUNB	N	N	0.019
36	NFKB2	N	N	0.019
37	FOXA1	N	Y	0.018
38	G3BP1	Y	N	0.018
39	MAPK8	N	N	0.018
40	PBRM1	N	Y	0.018
41	PA2G4	N	Y	0.017
42	CANX	N	Y	0.016
43	HIST1H1B	N	Y	0.016
44	SOX2	N	N	0.016
45	TBK1	Y	N	0.016
46	BRD4	Y	N	0.015
47	CEBPA	N	N	0.015
48	MYCBP2	Y	N	0.015
49	HNRNPC	N	Y	0.0146
50	TLE1	Y	N	0.0144

Please find a complete list of inferred proteins using the link below: https://filedn.com/IL2xsyY8teiHHTk3wYgUmVu/results/BU_RNA_Proteomics/singleKnockDown_Protein

<u>Info.tsv</u>

Top Phosphorylated proteins: 676 in total. They are the largest log fold change of phosphorylation (vs uninfected). Please refer to page 2 for the detailed step of getting top phosphorylated proteins.

Top protein pairs from msdrem double knock-out

1	Gene A	Gene B	Top Phosphorylated	Top Phosphorylated	Source A	Source B	Epsilon_score
2	HDAC2	NUP98	Y	Y	Y	Y	-0.054084280710472
3	NUP98	ZNF318	Y	Y	Y	Y	-0.031639974251359
4	NUP98	TCF12	Y	N	Y	Y	-0.023886891746087
5	NUP98	TLE1	Y	N	Y	Y	-0.018165796550107
6	EP300	HDAC2	Y	Y	N	Y	-0.017383578741585
7	EP300	SMARCA4	Y	Y	N	N	-0.0169261382919
8	ATF2	NUP98	Y	Y	N	Y	-0.016096475119695
9	EP300	MYC	Y	Y	N	N	-0.014742251576723
10	NUP98	PKP2	Y	Y	Y	Y	-0.014339963027297
11	NUP98	SMARCA4	Y	Y	Υ	N	-0.014299673399903
12	CHD4	NUP98	Y	Y	N	Y	-0.012833236313526
13	CREBBP	EP300	N	Y	N	N	-0.011113506435719
14	EP300	ZNF318	Y	Y	N	Y	-0.010289275657974
15	BRD4	NUP98	N	Y	Y	Y	-0.010281521404165
16	NUP62	NUP98	N	Y	Y	Y	-0.009947199504145
17	CREBBP	HDAC2	N	Y	N	Y	-0.00933669939213
18	CREBBP	SMARCA4	N	Y	N	N	-0.009051626505638
19	ATF2	SMARCA4	Y	Y	N	N	-0.008642882480171
20	SMARCA4	ZNF318	Y	Y	N	Y	-0.008426606752971
21	ATF2	EP300	Y	Y	N	N	-0.008298515826746
22	CREBBP	MYC	N	Y	N	N	-0.007991135702319
23	EP300	TCF12	Y	N	N	Y	-0.007712495917196
24	ATF2	MYC	Y	Y	N	N	-0.007504625314953
25	MYC	ZNF318	Y	Y	N	Y	-0.007410521288836
26	NUP98	REEP5	Y	N	Y	Y	-0.007228736760322
27	NUP98	PLAT	Y	N	Y	Y	-0.007209177250831
28	NCL	NUP98	Y	Y	N	Y	-0.007177888353749
29	ATF2	HDAC2	Y	Y	N	Y	-0.006952181242069
30	FOXA1	NUP98	Y	Y	N	Y	-0.006639693196061
31	HDAC2	TCF12	Y	N	Y	Y	-0.006610557717119
32	NUP98	TLE3	Y	Y	Y	Y	-0.00657219011527
33	NFKB2	NUP98	N	Y	N	Y	-0.006376278210566
34	SMARCA4	TCF12	Y	N	N	Y	-0.006361744851497
35	CEBPA	NUP98	N	Y	N	Y	-0.006292984770442
36	MATR3	NUP98	Y	Y	N	Y	-0.006063401228953
37	NUP98	TBK1	Y	N	Y	Y	-0.005990594453656
38	EP300	TLE1	Y	N	N	Y	-0.005907491793951
39	HDAC2	MYC	Y	Y	Y	N	-0.005573785831696
40	CREBBP	ZNF318	N	Y	N	Y	-0.005560134845143
41	ATF2	ZNF318	Y	Y	N	Y	-0.005312975410987
42	NUP98	RELA	Y	N	Y	N	-0.005038024067538
43	HDAC2	TLE1	Y	N	Y	Y	-0.00502727805059
44	NUP98	REST	Y	N	Y	N	-0.004865073094444
45	SMARCA4	TLE1	Y	N	N	Y	-0.004838057789369
46	MYC	TCF12	Y	N	N	Y	-0.004700443394698
47	HMGA2	NUP98	Y	Y	N	Y	-0.004698165698413
48	EP300	PKP2	Y	Y	N	Y	-0.004526911503787
49	EP300	SUMO2	Y	N	N	N	-0.004422742995151
50	ATF2	TCF12	Y	N	N	Y	-0.00439821308928

Please find a complete list of inferred proteins using the link below: <u>https://filedn.com/IL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/DoubleKn</u> <u>ockDown_ProteinInfo_1k.tsv</u>

Top Phosphorylated proteins: 676 in total. They are the largest log fold change of phosphorylation (vs uninfected). Please refer to page 2 for the detailed step of getting top phosphorylated proteins.

	Proteir	n top 10	00 gene	list + T	F		
	0	1	2	3	4	5	6
0.01	0.525544	0.00018	0.194486	1	1	1	1
0.05	0.525544	9.58E-07	6.36E-10	0.050682	1	1	1
0.1	0.525544	3.69E-06	1.80E-09		0.211704	0.028446	1
					C. Stock and the states		
0.15	0.525544	0.000492	5.32E-11	0.000136	0.00536	0.100379	1
0.2	0.525544	0.000942	1.47E-08	1.51E-06	0.00223	0.215479	1
0.25	0.525544	0.00822	1.84E-08	2.80E-07	0.019603	0.073937	0.067354
0.3	0.525544	0.013851	3.68E-07	4.17E-08	0.007846	0.184453	0.162935
	sy hyperte						
mbo			iabetes smok		sex age		
jun		-1 0	-1	-1 -1		0	-5 GC
fos		-1 0	1	-1 -1		-1	-3
ube		0 0	-1	-1 -1		0	
stat		0 0	-1	-1 -1		0	-3 <u>reg</u>
nek9 csde		0 0	-1	-1 0		0	-2 reg
myc		-1 1	0	0 0	and the second se	-1	-2 reg
timn		0 0	-1	0 0		0	-2 reg
junc		-1 0	0	0 -1		o	-2 reg
Imn		-1 0	0	0 0	1000	0	-2 <u>ne</u>
foxa		-1 0	0	0 0	0 0	-1	-2
exos	sc8	0 -1	1	-1 0	-1	0	-2 <u>po</u>
SOX	4	0 -1	-1	-1 1	0	0	-2 <u>po</u>
junt		-1 1	0	0 -1		0	-2 <u>ne</u>
rabi		-1 -1	0	-1 0		1	-2 <u>syl</u>
reep		0 -1	0	-1 -1	100 C	1	-2 <u>ne</u>
irf1		-1 0	1	0 -1		-1	-2 -2 rec
srf mef:		1 1 0 0	0	-1 -1		0	-
	za irca4	0 0	-1	-1 -1		0	
brda		-1 1	-1	0 -1		1	-3
cbx		1 -1	0	-1 0		-1	-2 <u>po</u>
foxa		-1 -1	1	-1 0		0	-2 reg
sox	10	0 0	1	1 0	0	0	2 00
tbk1		0 0	1	0 0	0	1	2 <u>vira</u>
ide		0 1	0	1 0		0	2 <u>ne</u>
rabi		0 1	0	-1 1		1	2
g3b		0 0	-1	1 1		1	4
nup	88	0 1	-1	1 1		1	2 <u>ne</u>
tle3		0 1	0	-1 0		1	2 2
sum		0 0	0	-1 1 0 0		0	2
golg		0 1	0	0 1		0	2
hmg		0 0	o	1 1		ō	2
top2		1 0	-1	1 1		0	2
cepi		1 -1	0	1 1		0	2
foxn	n1	1 0	0	0 1	0	0	2
pml		1 1	0	1 0	0 0	1	2
sec1	16a	0 1	0	0 1	o	1	3
nup		1 0	o	1 0		1	3
h2a		0 1	o	1 1		0	3
Sox		1 0	0	1 1		0	3
plau		0 0	0	1 1		0	3
chd		1 0	0	1 1	1	1	4
csni ero1		0 1	1			1	4
0.01			0			1.0	

GO pos

reg reg reg

reg nec pos pos nec syn nec reg neo nec pos reg pos vira nec neg neg

Intersection of top genes with underlying condition genes

Protein top 100 gene list + TF

	0	1	2	3	4	5	6
0.01	0.525544	0.00018	0.194486	1	1	1	1
0.05	0.525544	9.58E-07	6.36E-10	0.050682	1	1	1
0.1	0.525544	3.69E-06	1.80E-09	0.019216	0.211704	0.028446	1
0.15	0.525544	0.000492	5.32E-11	0.000136	0.00536	0.100379	1
0.2	0.525544	0.000942	1.47E-08	1.51E-06	0.00223	0.215479	1
0.25	0.525544	0.00822	1.84E-08	2.80E-07	0.019603	0.073937	0.067354
0.3	0.525544	0.013851	3.68E-07	4.17E-08	0.007846	0.184453	0.162935

gene_sy hyperte

mbol	nsion	COPD	d	iabetes smoke	1	cancer sex	age	sur	n
jun		-1	0	-1 ·	-1	-1	-1	0	-5
fos		-1	0	1 -	-1	-1	0	-1	-3
ube2i		0	0	-1	-1	-1	0	0	-3
stat6		0	0	-1 -1	-1	-1	0	0	-3
nek9		0	0	-1 ·	-1	0	0	0	-2
csde1		0	-1	0 -	-1	0	0	0	-2
myc	3	-1	1	0	0	0	-1	-1	-2
timm9		0	0	-1	0	0	-1	0	-2
jund		-1	0	0	0	-1	0	0	-2
Imna		-1	0	0	0	0	-1	0	-2
foxa3		-1	0		0	0	0	-1	-2
exosc8		0	-1	1	-1	0	-1	0	-2
sox4		0	-1	-1 -	-1	1	0	0	-2
junb	4	-1	1 -1		0	-1	-1	0	-2
rab7a	3	-1	-1		-1	0	0	1	-2
reep5		0	-1		-1	-1	0	1	-2
irf1		-1	0		0	-1	0		-2
srf	1	-1	1		-1	-1	0	0	-2
mef2a		0	0		-1	-1	0	0	-2
smarca4	1	0	-1		-1	1 -1	0	0	-2
brd2	1	-1	1		0		-1	1 -1	-2
cbx5		1	-1		-1	0	0		-2
foxa2		-1	-1		-1	0	0	0	-2
sox10		0	0		1	0	0	0	2
tbk1		0	0		0	0	0	1	2
ide		0	1	0	1	0	0	0	2
rab1a		0	1			1	o	1	2
g3bp1		0	0	-1	1	1	0	1	2
nup88		0	1	-1	1	1	-1	1	2
tle3		0	1		-1	0	1	1	2
sumo1		1	1		-1	1	0	0	2
ctnnb1		0	0	1	0	0	o	1	2
golga2		0	1	0	0	1	0	0	2
hmga1	_	0	0	0	1		0	0	2
top2a		1	0	-1	1	1	0	0	2
cep250		1	-1	0	1	1	0	0	2
foxm1		1	0	0	0	1	0	0	2
pml		-1	1	0	1	0	0	1	2
sec16a		0		0	0		0	1	
nup214		1	0	0		0	0	1	3
h2afx	-	0	1	0	1		0	0	3
sox2		1	0	0	1	1	0	0	3
plau chd4	-	0	0	0	1	1	0	0	3
cnd4 csnk2a1			0	0	1	0	0	1	4
csnk2a1 ero1b		0	1	1	1	0	0	1	4
PLD D							10	-	

Enriched GO categories for intersection genes

	Homo sapiens (REF)		L	pload_1 (Hierard	hy)) NEW! (?)	
GO biological process complete	<u>#</u>	#	expected	Fold Enrichment	+/-	raw P value	▲ <u>FDR</u>
positive regulation of nitrogen compound metabolic process	3274	<u>30</u>	7.22	4.15	+	5.94E-14	9.48E-10
regulation of nitrogen compound metabolic process	5895	37	13.01	2.85	+	3.28E-13	1.05E-09
regulation of transcription by RNA polymerase II	2193	25	4.84	5.17	+	2.92E-13	1.17E-09
regulation of nucleobase-containing compound metabolic process	4041	32	8.91	3.59	+	2.23E-13	1.19E-09
regulation of macromolecule metabolic process	6474	<u>38</u>	14.28	2.66	+	7.80E-13	1.38E-09
regulation of primary metabolic process	6088	37	13.43	2.75	+	9.62E-13	1.40E-09
negative regulation of RNA biosynthetic process	1274	20	2.81	7.12	+	7.09E-13	1.41E-09
positive regulation of macromolecule metabolic process	3621	30	7.99	3.76	+	8.87E-13	1.42E-09
positive regulation of transcription by RNA polymerase II	1259	20	2.78	7.20	+	5.71E-13	1.52E-09
negative regulation of nucleic acid-templated transcription	1272	20	2.81	7.13	+	6.89E-13	1.57E-09
symbiotic process	884	18	1.95	9.23	+	2.06E-13	1.65E-09
negative regulation of metabolic process	3098	28	6.83	4.10	+	1.24E-12	1.66E-09
regulation of RNA metabolic process	3781	30	8.34	3.60	+	2.80E-12	3.19E-09
negative regulation of RNA metabolic process	1373	20	3.03	6.60	+	2.76E-12	3.39E-09
negative regulation of transcription, DNA-templated	1219	19	2.69	7.07	+	3.75E-12	3.99E-09
positive regulation of transcription, DNA-templated	1600	21	3.53	5.95	+	4.46E-12	4.45E-09
regulation of gene expression	4873	33	10.75	3.07	+	5.67E-12	5.33E-09
positive regulation of metabolic process	3920	30	8.65	3.47	+	7.26E-12	6.10E-09
viral process	792	16	1.75	9.16	+	7.21E-12	6.40E-09
negative regulation of nucleobase-containing compound metabolic process	1477	20	3.26	6.14	+	1.03E-11	8.24E-09
negative regulation of cellular metabolic process	2607	25	5.75	4.35	+	1.38E-11	8.45E-09
negative regulation of macromolecule biosynthetic process	1500	20	3.31	6.04	+	1.36E-11	8.70E-09

TOP RANKED PROTEINS+TFS WITH RNA SCREEN HITS EVIDENCE

- Top ranked proteins+TFs from mSDREM analysis (179 genes)
 - 45 genes from mSDREM and condition-specific analysis

	Source			Phosphorylate
Gene	?	Function	Effect	d?
		catalyzes the phosphorylation and inactivation of the		
		branched-chain alpha-ketoacid dehydrogenase		
BCKDK	Y	complex	increased SARS-CoV replication	Y (24hr)
RAB7A ^a	Y	key regulator in endo-lysosomal trafficking	reduced MHV-CoV replication	N
CSNK2A		serine/threonine-protein kinase that phosphorylates		
1	N	acidic proteins such as casein	decreased SARS-CoV replication	Ν
		Transcription factor that plays a key role in neuronal		
POU3F2	Ν	differentiation	decreased IBV-CoV replication	N
		involved in transmitting chemical signals from the cell	conferred resistance to virus-induced cell death	
SMAD4 [*]	Ν	surface to the nucleus	(SARS-CoV-2)	N
		encodes for BRG1, a subunit of several different		
		protein groupings called SWI/SNF protein complexes.		
SMARCA		SWI/SNF complexes regulate gene activity thru	conferred resistance to virus-induced cell death	
4	Ν	chromatin remodeling	(SARS-CoV-2)	Y (6hr & 24hr)
		essential for nuclear architecture and chromosome		
UBE21	listed on	weighted condition specific analysis (P-value 9.60E-02	decrease IBV-pov seplication6E-02*	N
		ug targets but some associated compounds		

P-value 4.72E-03*

SDREM Predictions

Gene	minRank	Source	Approved drug name(s)
RELA	11	N	bortezomib; velcade
NFKB2	26	N	bortezomib; velcade
DNMT1	31	Υ	azacitidine; decitabine
BRD4	32	Y	fedratinib; alprazolam
ERBB2	45	Y	ibrutinib; lapatinib; neratinib; afatinib; acalabrutinib; dacomitinib; trastuzumab emtansine; trastuzumab deruxtecan; tucatinib; pertuzumab; trastuzumab

Drugs:

- Bortezomib (NFKb inhibitor) concentrations: 10uM, 1uM, 0.1uM, 0.01uM
 Stock = 50mM
 - 2. IC₅₀ (A549s) = 0.0025 μM
- <u>5-Azacytidine (DNMT1 inhibitor)</u> concentrations: 10uM, 1uM, 0.1uM, 0.01uM
 - 1. Stock = 100mM
- Fedratinib (BRD4 inhibitor) concentrations: 10uM, 1uM, 0.1uM, 0.01uM
 Stock = 50mM
 - 2. IC₅₀ (Caco-2) = 2.1-6.5uM, (HEK293) 1.2uM
- 4. Neratinib (ERBB2 inhibitor) concentrations: 10uM, 1uM, 0.1uM, 0.01uM
 - 1. Stock = 10mM

2. IC_{50} (MDA and other cancer cell lines) = <0.005uM or 1-10uM Apical: 30 minute pre-treatment only, treat apically with virus for 1 hr, then only basolaterally for remainder of experiment

Summary -II

- 1) iDREM framework could be extended to study infectious disease (signaling networks + regulatory networks)
- 2) Integration of multi-omics data could lead to the discovery of novel drug for COVID

Thanks

Collaborators

Ziv Bar-Joseph (CMU)

Naftali Kaminski (Yale)

Funding :

Nanopore sequencing

Third-generation sequencing

https://nanoporetech.com/applications/dna-nanopore-sequencing

https://www.sciencedirect.com/topics/neuroscience/nanopore-sequen cing