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Welcome!

We are a computational biology group at the Meakins-Christie Laboratories of the McGill
University School of Medicine. Our lab focuses on studying cell dynamics in various biological
processes in many diseases (e.g., developmental disorder, pulmonary diseases, cancers).
Decoding cell dynamics is essential for understanding the pathogenesis of diseases and
finding novel therapeutics. The existence of enormous heterogeneity in those diseases makes

My research:

1) Machine learning in health science
probabilistic graphical models
supervised/unsupervised deep neural nets

2) Single-cell Cellular dynamics
Single-cell Transcriptomics
Single-cell multi-omics

Data visualizations



You?

~1 min quick introduction (In English/Chinese)

1) Who am |?
2) My major?
3) What do | want to get out from this course?



What this course is about?

Bioinformatics
Computational Biology
Al+health (machine learning in health science)
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Discovery of cell
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Discovery of gene

= Gregor Mendel
was a monk 1n mid
1800’s who
discovered how
genes were passed
on.

-~ He used peas to
determine the
pattern of heredity

The image was download from slideplayer.com



Discovery of DNA (and its double helix structure)

Swiss physician and biologist James Watson and

Friedrich Miescher Francis Crick
Cell. DNA an:

Nucleus Chromosome

Images are from the DNA wiki page (https://en.wikipedia.org/wiki/DNA)



Human genome project

No. | Nation Name Affiliation
1 =} The Whitehead Institute/MIT Center for Genome Research Massachusetts Institute of Technology
‘72 ‘ iy . The Wellcome Trust Sanger Institute Wellcome Trust
3 =] Washington University School of Medicine Genome Sequencing Center | Washington University in St. Louis
4 =} United States DOE Joint Genome Institute United States Department of Energy
‘75 | = | Baylor College of Medicine Human Genome Sequencing Center VBaonr College of Medicine
6 @ RIKEN Genomic Sciences Center Riken
7 Genoscope and CNRS UMR-8030 French Alternative Energies and Atomic Energy Commission
78 _— 7 GTC Sequencing Center Genome Therapeutics Corporation, whose sequencing division is acquired by ABI
9 - Department of Genome Analysis Fritz Lipmann Institute &, name changed from Institute of Molecular Biotechnology
[ 10 N . Beijing Genomics Institute/Human Genome Center Chinese Academy of Sciences
1 B Multimegabase Sequencing Center Institute for Systems Biology
12 | = Stanford Genome Technology Center Stanford University
‘713 ‘ _— . Stanford Human Genome Center and Department of Genetics Stanford University School of Medicine
14 | NS University of Washington Genome Center University of Washington
|15 [ ] Department of Molecular Biology Keio University School of Medicine
‘716 | _— | University of Texas Southwestern Medical Center at Dallas VUniversity of Texas
17 | University of Oklahoma's Advanced Center for Genome Technology Dept. of Chemistry and Biochemistry, University of Oklahoma
; 18 | =m A Max Planck Institute for Molecular Genetics Max Planck Society
19 B Lita Annenberg Hazen Genome Center Cold Spring Harbor Laboratory
20 | . GBF/German Research Centre for Biotechnology Reorganized and renamed to Helmholtz Center for Infection Research&




What does DNA look like?
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Images are from wiki pages (https://en.wikipedia.org/wiki/DNA_sequencing)



How to represent a cell (e.g., what we often call genomics)

https://lwww.researchgate.net/publication/364396236_Single_cell_technologies_From_research_to_application/figures?lo=1



DNA data
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Why we need to study the DNA?

1) Better understand our human species (--> evolution)
It can answer who we are?

“Who” created us?
2) Better understand the mechanisms for many diseases

https://www.medicinenet.com/genetic_disease/article.htm

1. cystic fibrosis,

2. alpha- and beta-thalassemias,

3. sickle cell anemia (sickle cell disease),
4. Marfan syndrome,

5. fragile X syndrome,

6. Huntington's disease, and

7. hemochromatosis.



3) ** how to better “engineer” our genome**

(legal and ethical issues, might change in the near future)



RNA data



RNA is a big family

MRNAs: messenger RNA
MiRNAs: microRNA

IncRNASs: long non-coding RNAs



MRNASs

How many?
Not sure (around 20k~ 30Kk).
What do they do?



microRNAS

How many?
~2k
What do they do?



INcCRNAS

How many?
30k~60k
What do they do?

-> interact with DNA, other mRNAs, proteins.



Why we want/need to study RNAs

Animal Tissue

All images are from network ™



Protein data



Protein sequence

1 ATGGCTGATCCTGACCCTGGGGAAAGAAACTATGACAACATGLTG
a B A B P BP &8 R MY DNM L

46 AAAATGCTGTCAGACCTGAATAAAGACTTGGAAAAGCTGTTGGAA
K f £ S P L B K D L E K K £ E

Second Letter
91 GAGATGGAAAAAATCTCAGTGCAGGCCACGTGGATGGCCTACGAC
V] 04 A G E N E X E S ¥ Q AT U n A Y
uuu |phe ucu UAU | Tyr (uGu |Cys u 136 ATGGTGGTGATGCGCACCAACCCCGCGCTGGCGGAGTCCATECGE
U |uuc uce Ser UAC uGe c M V VM R T B P A L A E S M R
UUA |Leu UCA UAA Stop |UGA Stop|A 181 CGGCTGGAGGACGCCTTCCTCAACTGCAAGGAGGAGATGGAAAAG
uuG uceG UAG Stop |UGG Trp |G REEODA TR LNCK EENEK
cuu ccu CAU | His CcGU 1] 226 AAGTGGCAGGAGCTGCTCAGTGAGGCCAAGCGCGCGCAGTAG
K W B S E R R A =
¢ |cuc | Leu|cce | Pro |cac cec | arg € pilalle it " "
1st CUA CCA CAA | GIn |CGA A lay
cuG CCG CAG CGG G " o . : i
letter| | AU AcCU AAU | Asn |AGU |Ser U (letter T MADFOFGERNYONMLKML 8 DLNKDLEKLL & EMEKS 8V aATWMAYDMVY MR
A |AUC | lle [ACC | Thr |AAC AGC [of = . B
AUA ACA AAA | L AGA |A A -
AUG et | ACG aac | ¥ |ace |9 |c S S
GUU GCU GAU | Asp |GGU U “
G |GUC | ya |GCC | Ala | GAC GGC |aly |C
GUA GCA GAA | Glu | GGA A
GUG GCG GAG GGG G

Description: Synaplonemal complex central element protein 3
Coordinates:  1- 85 (alignment region 1- 84)
Source: plam

All images are from network



1) How many proteins
80k-400k proteins in human
2) What do they do?

Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for
the structure, function, and regulation of the body’s tissues and organs.



Other data



Other biomolecules

The four major types of biomolecules are carbohydrates, lipids, nucleic acids, and proteins.


https://www.britannica.com/science/carbohydrate
https://www.britannica.com/science/lipid
https://www.britannica.com/science/nucleic-acid
https://www.britannica.com/science/protein

Bioimaging data

X-ray
CT-Scan




Clinical health record

Disease severity
Disease diagnosis
Disease progression
Disease treatment
Disease prognosis



Data

Computational methods
Machine learning models

New biomedical discoveries
or innovations




Biomedical Data analysis platform






Install your python



Anaconda platform

https://www.anaconda.com/download

1) download the versions for your computer (mac or windows)
2) install anaconda

3)


https://www.anaconda.com/download

Write your first bioinformatics program

Write an “encoder” function to encode your name into DNA sequence

Write a “decoder” function to decode the DNA sequence into your name

Encoding rule:

https://www.illumina.com/content/dam/illumina-marketing/documents/landing/stem
[Translate%20Your%20Name%20Into%20DNA%20Code.pdf



Translate Your Name Into DNA Code
Write your name in the space below and use the table to translate it into a DNA sequence.




Find one in the other team to evaluate your encoding

Who is your mate in the other team? Base-pairing of your initials
Example:

My initial: JD

=>ATC,GAT =>T,C (if no exact match, find the closest one)

Send him/her your encoded DNA sequence and your name for evaluation.

If it's the decoding and the given name are not consistent, figure out who is wrong (winner gets 1 score, loser gets 0)

S(A)=
S(B)=
At the end of the course, we will test whether S(A)/S(B) is significantly bigger than S(B)/S(A)?

All'in the winner group will have a bonus of 5 scores



A~ WON -

N N N N’

DNA data analysis

Download a DNA sequence
Sequence alignment

Find a DNA motif

|ldentify a DNA mutation



How to download DNA sequences?

1) Ensembl

https://useast.ensembl.org/index.html

2) NCBI

3) UCSC genome browser


https://useast.ensembl.org/index.html

Sequence alignment

Example: Sequences Alignment
ACCCGA ACcceA
ACTA =align  AC--TA
TCCTA TCC-TA

images/slides partially come from course (https://math.mit.edu/classes/18.417)



Edit distance

An edit operation is a pair (x,y) € (XU{—} # (—,—). We call
(xy)
e substitution iff x # — and y # —

e deletion iff y = —
e insertion iff x = —

For sequences a, b, write a —(, ) b, iff a is transformed to b by
operation (x, y). Furthermore, write a = s b, iff a is transformed
to b by a sequence of edit operations S.

Example
ACCCGA —(C,=) ACCGA —(G.T) ACCTA —(—,T) ATCCTA

ACCCGA =(C,=)I(G, T)(=,T) ATCCTA

images/slides partially come from course (https://math.mit.edu/classes/18.417)



Comparing two DNA sequences

« Given two possibly related strings S1 and S2
— What is the longest common subsequence?

S1 |A|C|G

CIA|T|CIA

T
T

\ 4

S2 [T]|AlcG

S1  |A[C|G|T|C|A|T|C|A| Editdistance:
S2 ]'L_Lv EEE *Number of changes
DA =T 1lEaa needed for S1>S2
LESS A GIT TIC|A

images/slides partially come from course (https://math.mit.edu/classes/18.417)
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithms-
for-computational-biology-spring-2005/lecture-notes/lecture5 newest.pdf



How can we compute best alignment

S1 |A|IC|G|TI|C|IA|TI|CI|A

S2 [ TIAIG|T|GIT|CI|A

» Need scoring function:
— Score(alignment) = Total cost of editing S1 into S2
— Cost of mutation
— Cost of insertion / deletion
— Reward of match
 Need algorithm for inferring best alignment
— Enumeration?
— How would you do it?
— How many alignments are there?

images/slides partially come from course (https://math.mit.edu/classes/18.417)
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithms-
for-computational-biology-spring-2005/lecture-notes/lecture5 newest.pdf



Dynamic programming

5 Rewarding matches

Inltlallzatlon
l Tl ey

Update Rule:
A [-1] .A(u)=max{
o -1 « A1, j)-2
S s A(i,j1)-2
. l- » A1, j-1) £1
Termination:

» Bottom right

|mages/slldes partially come from course (https://math.mit.edu/classes/18.417)

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithms-
for-computational-biology-spring-2005/lecture-notes/lecture5 newest.pdf




Example

Align the DNA sequence encoded from your initials with someone else in your opposite team

Compare the best alignment that you got, find out whether they are consistent.
If not, figure out which answer is correct

Record the score



Why we want to align sequences?

Essentially, sequence alignment is used to find the distance between “sequences”

A lot of applications:

1) Assembly the genome
2) Quantify gene expression

3) Study the conservation between species

4) Understand the evolution



Python Basics



Python basics

Basic syntax

https://www.learnpython.org/



Python file inputs/outputs

Read /Write

1) Write a string to a file
2) Read back the string from the file



1) Find a DNA motif



What is a DNA motif

we have to understand what is transcription factor (TF) ...

transcription factors

ofeukaryotic cells

1 Activator proteins bind to pieces of /
DNA called enhancers. Their binding /
causes the DNA to bend, bringing A note
them near a gene promoter, even o/ This diagram simplifies the DNA

though they may be thousands of greztly—promoters, ephancers,

base pairs away.
Enhancers

Omertranscﬁpﬁon % _
factor proteins - R 4 Aninsulator can stop the enhancers

‘~-V.‘_\_\i_ =

from binding to the promoter, if a
Other transcription factor proteins protein called CTCF (named for
join the activator proteins, forming the sequence CCCTC, which occurs J
a protein complexwhich binds to inallinsulators) binds to it.
the gene promoter.
112 ; Insulator

3 This protein complex makes it easier
for RNA polymerase to attach to the
promoter and start transcribing
agene.

amethyl group tothe C

nudleotides, prevents CTCF

from attaching to the insulator,
CTCF turning it off, allowing the

RNA polymerase (CCCTC-binding factor)  enhancers to bind to the promoter.

Images are from https://www.yourgenome.org/facts/what-is-the-central-dogma and wiki
page

Promoter » .‘ Protein — —
" 5 Methylation, the addition of

DNA replication
DNA — DNA

Transcription
DNA —RNA

RNA —Protein

£ /’V and insulators can be dozens or even
L hundreds of base pairs long.
RNA

Translation

\W' :

Adenine (A)
Thymine (T)
Cytosine (C)
Guanine (G)
Uracil (U)

Amino acid


https://www.yourgenome.org/facts/what-is-the-central-dogma

Nucleotide Code: Base:

TF blndlng pattern mOtIf N AR R EA LS Adenine
0 oio-acmn sconmomnn mmsen e Cytosine
Example: TATABOX <->TBP = M Ry L 0 Guanine
TATABOX: TATAWAWA T {(OF U) nee oone aumoe Thymine (or Uracil)
1 Y s I Pl Aor G
TATAJATIAIATIA X s xcmse scmmomse mms agamn C or T
= T s ihlls oretlln oLl (EASALE G or C
Weeeeeeenenenonnns A or T
TATAAAAA | by L e Y Gor T
TATAAATA L A or C
B hllts ool o bl fEARAALL CorGor T
TATATAAA Do acmin siormon mose acmme Aor Gor T
TATATATA ER o ahlls ool o bl LRSS Aor CorT
Ve acmin aarmamn aosa acmmn Aor Cor G
! AN N g S any base



How to identify DNA motifs?

Enrichment analysis

An example:
JUND
JUNB
FOS
IRF1
IRF2
ATF2



How to find DNA motifs?

TATABox —l G1
[ G2

TATABoOX

TATABOX [ G3

TATABOX | G4




CHIP-Seq

(A) Sample preparation and sequencing

DNA Reads
Histone modification  ch(p Senicots Sequencing  (single-end) Read
TF 4 3 mapping
é o o e % GGTATGCC
Nucleosome OPen | o e ACATTGGC
chromatin TTCAGTGC
(B) Computational analysis
S ol o Reud disrbuticn Chromatin.state Chrolmatin. state
E visualization :nnotatlon clustering
. F i é
1 AL R
Peak calling Motif analysis GO analysis

> Regulation of cell prokferation
i Regulation of cell growth
' - )
i Y Regulation of growth
_— c? v CCC; CI c.T e

Cel-subsirate sdhesion

(=)

Nakato, Ryuichiro, and Toyonori Sakata. "Methods for ChlP-seq analysis: A
practical workflow and advanced applications." Methods (2020).



Map the reads to the reference genome

bowtie2

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Bowtie 2 version 2.3.4.1 by Ben Langmead (langmea@cs.jhu.edu, www.cs.jhu.edu/~langmea)
Usage:
bowtie2 [options]* -x <bt2-idx> {-1 <ml> -2 <m2> | -U <r> | --interleaved <i>} [-S <sam>]

<bt2-idx> Index filename prefix (minus trailing .X.bt2).

NOTE: Bowtie 1 and Bowtie 2 indexes are not compatible.
<ml> Files with #1 mates, paired with files in <m2>.

Could be gzip'ed (extension: .gz) or bzip2'ed (extension:
<m2> Files with #2 mates, paired with files in <ml>.

Could be gzip'ed (extension: .gz) or bzip2'ed (extension:
<r> Files with unpaired reads.

Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).
<i> Files with interleaved paired-end FASTQ reads

Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).
<sam> File for SAM output (default: stdout)

<ml>, <m2>, <r> can be comma-separated lists (no whitespace) and can be
specified many times. E.g. '-U filel.fq,file2.fq -U file3.fq'.



http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Peak calling method

MACS2

https://hbctraining.qithub.io/Intro-to-ChlPseq/lessons/05 peak calling macs.html



https://hbctraining.github.io/Intro-to-ChIPseq/lessons/05_peak_calling_macs.html

p-value

HO: coin is fair (50% chance for head/tail)

Observation: 10 tests, 9 heads

P-value: the probability of observing 9 heads (and more) by random
p=1-pbinom(9-1,10,0.5)=0.01074219 (1%)

<cutoff (often 5% or 1%), reject the HO

Conclusion (coin is unfair), the probability of wrong conclusion is around 1%

p=1-pbinom(7-1,10,0.5)=0.171=17%



jund@tiger:~$ macs2 callpeak

‘usage: macs2 callpeak [-h] -t TFILE [TFILE ...] [-c [CFILE [CFILE ...]]]

7BAHPE SEbEET [-f {AUTO,BAM, SAM,BED,ELAND, ELANDMULTI, ELANDEXPORT,BOWTIE, $ macs?2 callpeak -t

4 : -g GSIZE] [--keep-dup KEEPDUPLICATES] bowtie2/Hlhesc Nanog Repl aln.bam \

‘ --buffer-size BUFFER SIZE] [--outdir OUTDIR] [-n NAME] -c bowtie2/Hlhesc Input Repl aln.bam \

i -B] [--verbose VERBOSE] [--trackline] [--SPMR] —-f BAM - i i - -
-s TSIZE] [--bw BW] [-m MFOLD MFOLD] [--fix-bimodal] g Lo g

i --nomodel] [--shift SHIFT] [--extsize EXTSIZE] -n Nanog-repl \

j -q QVALUE | -p PVALUE] [--to-large] [--ratio RATIO] —--outdir macs?2

--down-sample] [--seed SEED] [--tempdir TEMPDIR]
--nolambda] [--slocal SMALLLOCAL] [--1local LARGELOCAL]
--broad] [--broad-cutoff BROADCUTOFF]
--cutoff-analysis] [--call-summits]
--fe-cutoff FECUTOFF]

macs2 callpeak: error: argument -t/--treatment is required

C



Extract sequences from extended peak regions

>mmB8_MACS_peak_17
TGCATGCACACACATAAATAAGTAAATCAATGTAATATAATCCATTTCTA .
>mm8_MACS_peak_18
CTTTTTCTTTTATACACAATTCTTTACTTTGTTACTTGTTTCTGCACCC ... ...

¥

Generate motif candidates Selecttop n motif f:andldates
. e BN B e EU O B i REE e
:CTT? MO T T,
=T GT VN T MI I IR A
- - P M, "= e P

e CCTCACA
Predictmotif modules

#lterations>rorn

Output motifs & motif modules Update top n motif candidates
M ~ B S e e o
eTCTTCT x i : Mo_ e N R O e AN
Mlans e e M e eT

ICAGGAAAG ——n —aa— M, ©SrccAacao..
............ M, e e

https://academic.oup.com/nar/article/42/5/e35/1055374?login=true



Features 7‘

"l""’ﬂ'l“’! i

MoS , Thresholds We.gms

a  Current batch Motif scans
of inputs

[CrARGEACCETCT—
TAGCA"CTC"‘A'XTGCA"C
Crccoaciccroaay

TACAMTGAGCA

Current model
parameters
Parameter
updates
b 1. Calibrate 2. Train candidates 3. Test final model
o = 0@ — }-096
Evaluate Use best %
random (2:) calibration | 7 =95 y
calibrations . (3 attempts) | 0@ —_— 97
6130) ssopmsssnsmissoassontonismanmmsioidl - i :
g : Tralmng | ?
\ Use all training data i Use parameters
Average : AUC - | i of best candidate

( 3-fold cross validati;n i H
validation | [ Train }— 0.97

AG | e oot ;
| Test data never seen

. during calibration or training

Deepbind

https://www.nature.com/articles/nbt.3300



Chip-seq data analysis pipeline

Download reads
(fastq)

sra-toolkit

Map reads

4

(sam/bam)
bowtie2/Hisat2?

Identify enriched motifs
(TFs)

Process mapped
reads (e.g., sort
bam)

<— Peak calling




RNA-seq data analysis



VIVO

In

In vitro

Insilico

RNA-seq

DNA gene in genome I

Transcription
Pre-mRNA
Intron splicing
Mature mRNA
Fragmentation

RNA fragments
Reverse transcription

ds-cDNA fragments
High-throughput sequencing
Sequences

Sequence processing

Alignment

e e e
4

BN I I ..
N N B NN

TATGAGACGCATGCTA ACCCCGCC GLGATATATATA CGOGACGATGACT ATATAGC TCGACTGCCAT

GATAGGT GTGACTACCGOCCCAT GAAGCGECACT GACT ATGAGACGCAT GCT AACCOCGOOGLGATATAT ATACGOGACGAT GACTAT AT AGCT CGACT GLCAT GACAAMGT GAAGCCGCATATCTGCTGGGTA

Splice variant A

Splice variant B

Genome sequence

BN N Em—)
—\/—



Quality control (qc)

Depending on the quality, you might need to trim the reads

fastp

Optional

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/



Reads mapping

HISATZ2

RNA-Seq reads

= —
— == “ofSo o=
O gfFguEo S_o= =
=
o g @288 R, oo
=
— - - I B

Align reads to

genome
— = = [ [ —]
s 80— 0 00— o J
0 0——O0O 0 r—mecoO,
= s I e | s s 2o e f s |
= O 0—0 COoOoOse— 2o/,
= O oo E o—ooOe;
Genome

Assemble transcripts
from spliced alignments

ISl More abundant
Ch—_am—a—)
(-] Less abundant

Assemble transcripts
de novo

Align transcripts
to genome

\j

CE—— ]
——_u_mm—- )

All images are from network
All images are from network



intersection intersection

Quantify gene expression i s
gene A gene_ A gene A
read |
GEEA ‘ gene A no_feature gene A
htseqg-count [options] <alignment_files>
<gff_file> — el — gene A no_feature gene_A
gene A gene A gene A
read
gene A gene A gene A gene A
gene B
read ambiguous
gene A (both genes with ~ gene_A gene A
gene:t --nonunique all)
read -
BRAETR ambiguous
§ gene B (both genes with --nonunique all)
| _read |
. 7 alignment_not_unique
All images are from network ¥ ailEb

(both genes with --nonunique all)



Linear regression

Linear regression

y = Bo + Prix1 + Bazat. .. +Fnn y

o O N 0 O O

How to search the parameters?
1) Brute-force
2) Gradient descent

E=2% (-7,

N0

All images are from network

O-h




Logistic regression

1
P = ——— p— .
1 t b (-SI_I ' "31 xy -3‘2"72 te e ot .‘3m L )
1
0.5+

| a | | J
-6 -4 -2 0 2 4+ 6
All images are from network




Support-vector machine (SVM)

A hyperplanein RZisaline A hyperplanein R3isa plane
T e R
. et e R
/| o A L1
2R / : g oige
Small Margin %rge Margin ——

Support Vectors

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-
algorithms-934a444fca47

All images are from network



Linear/non-linear classifier

Kernel
function

All images are from network



Decision tree

Saturday ?

T

Sunny day ? Have exams?




Random forest

Random Forest Simplified

Instance

Random fV \
LAKN £30K K38

Tree-1 Tree-2 Tree-n

Class-A Clalss-B Class-B

Majority-Voting |

'Final-Class |

All images are from network



Pitfalls

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

— Model
— True function
e Samples

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

under-fitting

—  Model
~ True function
e Samples

good

All images are from network

Degree 15
MSE = 1.81e+08(+/- 5.42e+08)

~—  Model
~ True function
e Samples

over-fitting



Regularization

L1- regularization L1 Regularization

N M M
L2-regularization Cost = Z(}?i _ Z Xij Wj)z 4+ X Z |W]|
=0 j=0 j=0
* L1 tends to generate sparser solutions than a L2 Regularization
quadratic regularizer
I

M
J;’ Data term only: COSt Z (17 - Z Yl] [,V ) 2 + A Z [’VZ
all §; non-zero
1_\/ \/
Regularized estimate:

/ [ some . may be zer Loss function Regularization

Kj oo X/ = Term

All images are from network

1>




An example data

https://www.kaggle.com/uciml/pima-indians-diabetes-database

Try to download the data

wget
https://filedn.com/IL2xsyY 8teiHHTk3wYqUmVu/sdu_summerclass/RNA/diabetes.t
xt


https://www.kaggle.com/uciml/pima-indians-diabetes-database

An example study (biomarker discovery)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162164

The image is from wiki



Homework 1:

description: you need to build a classifier (e.g., random forest or svm) for the prediction
of TB on HIV patients.

steps :

1) download the dataset from the NIH GEO database
https://www.ncbi.nim.nih.gov/geo/download/?acc=GSE 162164 &format=file

2) annotate the patients with its phenotype
in other words, some patients are HIV only, the rest are HIV + TB

3) do some basic file reading and processing (convert float values)

4) train a model, could be tricky, the performance could be very bad

5) you need some tricks to minimize the number of features (some feature selection to
reduce the feature space), for example, if you find a gene that is not very different from
HIV vs HIV+TB, then you know this feature won't be important

6) you train the model and calculate the accuracy, report it

7) write a report (jupyter notebook, detailing each of the steps and results)

you need also to tell me what is the biomarker (the most critical feature for the TB+HIV
disease)


https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE162164&format=file

Clustering methods



Visualize the data

PCA (Essentially, it’s linear transformation)

original data set

104 . output from PCA
81 4
n @
2 27
E ||$Z—P€Bz|| 6 : K
\ J
1=1 y \/ pc2 0 oo 1
@
4' ° 2
@
<4_
2_.
'6'! T T T T
- 4 2 0 2
0 T T T T 1 pcl




Visualize the data

t-SNE (and UMAP)

exp(—||x; — x;|*/207)

Pjli =
Zk?éi exp(—|x; — xk||2/2‘7?)

L+ [ly; —y;1*) !

qij =

Dok (L [lye = wl?) !

0.5
) q(x
0.4+ Pl
= 0.3
3 021
0.1
0.0 = = : :
&
Pjii + Pilj
Yo 2N

Dxi(P|| Q) =) P(x) IOg(QE‘t;)-

reX




Clustering methods

K-Means

k
argsminz ) e — |

=1 XES;

0.9 v

0.8 +

0.7 +
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0.5 1

0.4 ¢

0.3 ¢
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0.1

Iteration #0

e
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+

.
2o
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+
il

+
i+
e $
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+
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+
++
+5

1_+
¥

H

+
B4
M
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+ +

o]

0.1

02 03 04 05 06 0.7 0.8 0.9

https://en.wikipedia.org/wiki/K-means_clustering#/media/File:K-means_convergence.gif



Clustering methods @00
(o) (e
(ae)

Hierarchical clustering

(bedef)

e The maximum distance between elements of each cluster (also called complete-linkage clustering):
max{d(z,y):z€ A, ye B}.
e The minimum distance between elements of each cluster (also called single-linkage clustering):
min{d(z,y):z € A, ye B}.
e The mean distance between elements of each cluster (also called average linkage clustering, used e.g. in UPGMA):
FEp L
rzeA yeB

e The sum of all intra-cluster variance



Clustering methods

400 1

Density estimator 350 1
300 1

250 4

200 1

150 -

100 1

5 ]

0.
0009 0010 0011 0012 0013 0014 0015 0016

- |ate

early
N |ate
BN early

250

| 200 -

4 150.

100 1

0.002 0.004 0.006 0.008 0.010 0.012




Leiden clustering (/Louvian clustering)

Modularity is a measure of the structure of networks or graphs which measures the strength of division of a network into modules (also
called groups, clusters or communities).

Move nodes
a) c b)
Level 1
Aggregate
c) d)
Level 2

i

Move nodes

All images are from network



https://en.wikipedia.org/wiki/Complex_network
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Model selection?

How to choose # of cluster (K) in the K-means?

How to choose the resolution parameter in Leiden clustering ?



Clustering evaluation metrics

Cluster 2

Silhouette Score = (b-a)/max(a,b)



Graphical models



What is a graph

Node
Edge



Bayesian network

P(X,,....X,) =[] PX; | X,,....X,,) =] | P\ X, | Parents(X,))

i=1 el

P(C=T) P(C=F)
0,5 0,5
1) Inference =

p(xle)=p(x,e)/p(e) @ TR
P(ale) =a 3 PlreY) S L‘/_J
YyeyY

p(WetGrass=True|Clouldy=True) @ o
(2) Parameter learning ﬁﬂ) P(S=F) \
: | 01 0,9

0,5 0,5
P(A|B)=N(mu,sigma)

3) Structure learning

S R | P(W=T) P(W=F)
T 0,99 0,01
T F 0,9 0,1
F T 0,9 01
F F 0,0 1,0




Bayesian network

C=True=> S={0.1,0.9}
C=True=> R={0.8,0.2}

C=True => W=True

C=True=>S=True, R=True (0.1*0.8) =>0.99
S=True, R=False (0.1*0.2) =>0.9
S=False, R=True (0.9*0.8) =>0.9
S=False, R=False (0.9,0.2) =>0



Markov chain

P(Xn.+m = S|X() =10y Xp_1 = Z.n—l) = P(Xn+m — S|Xn—l — Z.n—l)




1 2 3

Diffusion

140 1 0
P=2[13 o 2/3]. P=[F;1211’p1222
3\1/3 1/3 1/3 p22]

PA2=[p11*p11+p12*p21, p11*p12+p12*p22
p21*p11+p22*p21, p21*p12+p22*p22]

0.251029 0.36214  0.386831

0.251029 0.366255 0.382716

) 0.246914 0.407407 0.345679
P = PAN

0.249996 0.375095 0.374909

0.250013 0.37474  0.375248
PIO o
0.249996 0.375078 0.374926

0.2499999999 0.375000003  0.374999997

0.2500000002 0.3749999913 0.3750000085
PQ() o
0.2499999999 0.3750000028 0.3749999973



High-order Markov Chain

ACGTACTTCGAGGTTTTTAAACTACTACT

2nd transition matrix

AC->G
CT->T
GT->A
TA->C



Transition matrix in the upstream region of the following
genes

JUND
JUNB
FOS
IRF1
IRF2
ATF2



Hidden Markov Model (HMM)

z(t —1) @ x(t+ 1)

Initial probabilities
Transition probabilities
Emission probabilities P(O|S)



Inference

Given Pi, emission matrix, transition matrix => infer hidden states that fit the
observation

p(S1,. ..







p-value

HO: coin is fair (50% chance for head/tail)

Observation: 10 tests, 9 heads

P-value: the probability of observing 9 heads (and more) by random
p=1-pbinom(9-1,10,0.5)=0.01074219 (1%)

<cutoff (often 5% or 1%), reject the HO

Conclusion (coin is unfair), the probability of wrong conclusion is around 1%

p=1-pbinom(7-1,10,0.5)=0.171=17%



Mann-whitney U test

HO: the probability of X being greater than Y'is equal to the probability of Y being greater than X.

n m
U=Y_Y_ 8(X:Y;),
i=1 j=1
with
1L, Y <X,
S(X,Y)=¢ 2, fY =X,
0; it¥VsX



How to calculate U-statistics

L: Lilei
H: Han meimei
Result:

LHHHHHLLLLLH

U1=
U2=

L=[1,3,7,8]
H=[2,1,9,6]

i=1 j=1
with
L, Y <X,
S@ﬁﬂ:{; ifY = X,
0; APV X



Fold change

X=[2,3,4,5]
Y=[5,6,8,12]

X->y
If mean(Y)>mean(X):

Fold change=mean(Y)/mean(X)
Else:

Fold change=-1* mean(X)/mean(Y)



i . Background frequency: 0.5
Binomial test 20 invites

Yes: 15 times
20: 5 times

P-value?

=)
L ZTE Axon 10 Pro 2021.07.19




Single-cell genomics



Cells: the building blocks of life

Bundle of
nerve cells

Loose connective tissue
with fibroblasts

Red blood cells

Bone tissue
with osteocytes , muscle cells

; #= Intestinal epithelial cells
Figure 1-17 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)



Why we need the single-cell?

Human Cells

s » «

[ .1 /{‘,’hl'\\ 5-’@0 2N
\ A 1/ ) Co 2. = [5o¥
- -, """

Blood

Build a google map of human body

Resected
patient tumor

°Q @

@ ©

Dissociated & R S
tumor cells
Single-cell RNA
sequencing

Better disease diagnosis and treatment



Cell Atlas Initiatives

Artificial Intelligence

Data Mining
&Modeling

Clustt Carnegie Mell
Machine

HuBMAP

There are

37 trillion cells

in.the human body

The Human Cell Atlas will create a ‘Google map’
of the human body. This is a global effort.

Human Cell ATLAS



Cell Count

Single-cell data is accumulating fast

Cell Count by Release Date

20000
Usable

Below Alignment Rate Threshold
No Data Available
Not Mapped to Ontology

17500 A

15000 H

12500 A

10000 A

7500 A

5000 A

2500 A

FAM) ] ASND) FMMJ J ASONDJ FMAM) J ASONDJ FMAM) JASOND ] FMAM | |
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2018




Single-cell vs. Bulk Sequencing

Single-cell



Single-cell applications in biomedical studies

L [1] Cancer Biology
£ r - ’ T -
e ,
“ - \%. 4 g " Mv 4\‘ ‘G-"
AN - ~ el
I T, Ay &

[3] Developmental Biology

[1] Engblom et al. Science. 2017 [2] Fadrosh et al.

Nat Commun. 2016 [3] Treutlein et al. Nature. 2014

[4] Zheng et al. Cell. 2017 [5] Quadrato et al. Nature, 2017 [6] Heath et al. Nat Rev Drug Discov. 2016

All images retrieved from Illumina websites



Developmental Trajectory




Developmental trajectory inference methods

Developmental tree of early zebrafish embryogenesis

Ventral
Neural mesoderm
plate - Paraxial
border mesoderm

Mid and Y
Neural crest hindbrain 1 . . /\% 4 Endoderm
spinal cord i A g > \
placodes, optic 2 X/\\’ & . !_/ o
cup % A g
Foreby\ R 7

o " ja s 7 = 26 - ¢ -
Epidermis - o 3 9 f o £ .
Y‘//,ﬂ"j' N £ - P Axial
= : * S
Do X O T W mesoderm
“~ 3 ’ -

L e —
Periderm 5™ rememe

/ Ventrolateral mesoderm

- - -

.o N 1 -
i Primordial germ cells

Reconstructionof _________
developmental trajectories

..‘ e : W4

sele] OO

Embryonic development

Farrell J. et al. Science,



Machine learning challenges?

% Curse of dimensionality
% High noise level
% Enormous heterogeneity

= specific computational challenges:

% Reducing the data dimensionality
% ldentifying sub-population (clustering problems)
% Reconstructing the cellular trajectories



Curse of dimensionality

Analyzing of the high dimensional data often suffers from the curse of dimensionality

-

[ [/ /
/
\

ANANAN

The searching space increases exponentially
Neighbors of each data point also increase exponentially
Distances are on longer informative

Iim E

d—o0

< dist,nax (d) — distpy (d) )
— 0.
diStmin (d)




C1: Most importantly, human eyes can’t see anything beyond 3D

Suppose your boss gives you a single-cell dataset (10k cells by 20k genes), and
told you that he wants to see what it looks like.

What is your first thought?

arg ming|z — F(x)|




Dimensionality reduction

e LinearF
PCA

e Non-linear F
t-SNE (U-MAP)
Auto-encoder

Non-linearly separable data



PCA

https://s3-us-west-2.amazonaws.com/articles-dimred/pca/animation.webm

Find a linear transformation to project the data from HD to LD space that minimize the
projection error.

n

> |lzi — Pail|?

i—1

P represents the transformation matrix


https://s3-us-west-2.amazonaws.com/articles-dimred/pca/animation.webm

t-SNE

1) Measuring the distance in higher dimensional space (Gaussian distribution)

2
exp(—||zi—;||"/207)

Pil: — 5
7l >z exp(—||@i—zx|[*/20?)
P. . »i|jtrili
L= N

Zz’,j pij = 1



t-SNE

2) Measuring the distance in lower dimensional space (long-tail student t distribution)

Normal vs Cauchy (Students-T) Distribution

9 -1
(11w
dij —

B Dok Dotk (1+|ka—yl||2) B

Why not using Gaussian distribution in LD too?

The Gaussian distribution in 2D space will force
all time points “together” => crowding problem

This can be mitigated by the “long-tail” student
t-distribution



t-SNE

(3) The locations of the points in the LD space (y) are determined by minimizing the
(non-symmetric) Kullback—Leibler divergence of the distribution P from the distribution

Q.
C = KL(P||Q) = X, ;pijlog

Then use the gradient descent to search the Vi that minimize the KL divergence
C.


https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Diffusion map

1) Calculate the transition probability matrix M(i,j) (e.g., base on the distance
and a chosen kernel).

2) Diffusion M*(i,7)




Autoencoder

Encoder
Input
Input Output
= 4
L I\VS g
N T R ; 7 //
— S ) —]
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RECAP 1

Dimensionality reduction techniques are commonly used in single-cell genomics
Popular techniques:

Linear: PCA (Linear),

Non-linear: Classical: t-SNE/UMAP, Neuron network: Autoencoder

It is usually the first step of the high-dimensional data analysis




C2. Single-cell data is very noisy

The single-cell dataset (10k cells by 20k genes) data is very noisy
You want to “fix” or “clean” the data, what would you do?




Single-cell data “fixing”

MAGICI1] is a popular method to fix the missing values (e.g., dropout) in single-cell

di

.

i Original Data Sencs

Cells

a

.

3

( i Calculate Distances

Cells

S
(
v Exponentlate markov
matrix \ ‘
_

8 \ 4t
J
b
: )
i Calculate Affinities \ R Ga\;sslan|
E ermel
=
\ <
Distance J
¥
© h A
iv Markov normalization 3 03|
D
- c/o':
01 o '
~ = — Q

vi Impute gene expression
Exp. Markov Mat.  Original Data Imputed Data
5 "“
X = .
..

2

[1] Dana Pe’er et al. Cell, 2018

A (4, j) iz v
o A(ij)
M (7':.7) i A(Ji.k)

Tt
Dirnputed = M"xD

M*(i, j)

represents the probability that a
random walk of length ¢ starting at
cell i will reach cell j, thus we call t

the “diffusion time.”

Markov transition probability from i -> |

R2

P,




Single-cell data denoising

Guess what is the most commonly used track?

=> remove the “bad cells”

How?

1) Remove cells with low # of expressing genes
2) Remove cells with high % of mitochondrial reads



RECAP 2

1) Single-cell imputation (e.g., MAGIC ->data fixing)
2) Single-cell data cleaning (e.g., filtering -> denoising)
3) Garbage in => Garbage out
Always try to clean the data first before the actual modeling/analysis




C3. Single-cell data is enormously heterogeneous

The single-cell dataset (10k cells by 20k genes) data is heterogeneous
You want to identify all sub-populations, what would you do?

Clustering




K-Means

Assignment:

SO = {g, 2 < OIPvj1<j<k S B 58

o= fap i lmp —m |7 < lwp —my” |7 Vi1 <G < k], o
Assign the cell to the closest cluster (nearest centroid).
Update: i & et

m(gq) _ 1 Z z; " ' tu' .o."" .“:}, .

z ngt) :chS(f) ARV
: o)
. Iteration #0

i 02 03 04 0SS 06 OT 08 09 1

From Wiki page



Louvian/Leiden

1 u# '.' —o013
Modularity 12 Community

Qd=12— [Aij - %] d(ci, ¢5), /‘ \"‘-’

2m 17.] 2

1st pass

2ndpass 26 q 24
—> @O

where

Aij is the weight of the edge between i and j.

ki is the sum of weights of the vertex attached to the vertex I, also called as degree
of the node

ci is the community to which vertex i is assigned
d(xy) is 1 if x = y and 0 otherwise
m = (1/2)2 Aij i.e number of links

1st step: A greedy algorithm is applied to search for the maximal Q (moving a node from
community i to all its neighbors) => guarantee a local optical.

2nd step: update the weight between communities.

Such passes are repeatedly carried out until there is no more change in the cluster, and a maximum of
modularity is achieved.



Supervised neural network for clustering

input hidden output

2
Loss = ) ;e pllys — F (zi)]]




Variational autoencoder

Reconstructed
R~ e e e Ideally they are identical. ~ —-----------------ooo- J input
x ~ x’
Probabilistic Encoder
q0(2z|x)
Mean w Sampled
latent vector
Probabilistic
X > > Decoder > ¥/
po(x|2)
o
Std. dev
_ An compressed low dimensional

Z=p+o0Oe representation of the input.
e ~N(0,I)




How to annotate cluster?

Now, you got the clusters.
But, what are those clusters? (e.g., what cell types they are? What set of genes

they are expressing)
OPEN QUESTION
A few existing solution:

(1) Use marker genes
(2) Use functional analysis (e.g., GO enrichment)
(3) Compare with expression data with known cell types



RECAP 3

1) Clustering is the most widely used method to identify sub-populations
2) Popular methods: K-means, SOM, Louvian, Leiden, ANN (supervised)
3) No good ways to annotate clusters yet.




C4. Reconstructing trajectories from Single-cell data

How to infer the cell dynamics (the cellular state change over time) from single-cell
data (often time-series)




Monocle

N

a
’ y ’ 2 :
min min min z ” x' . fg (zl) ” o. X Initial dimension e Guess_ initial
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). [S0 & @ (LLE, DM, ...)

'
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(Vl > “, ’ )68 s\“‘ Repeat until both cell trajectory
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\" Update cell
centroids
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Qiu et al. Nature Methods, 2017



high-dimensional space

PAGA

metric,
kNN,

graph
partitioning

Wolf et al

resolution 1

resolution 2

single-cell graph

«
v & {
A *
X «»
s, S

PAGA graph
- l .
initialize
embedding
P PO P
.................. ’
measure
partition A ®
connectivity

. Genome Biology, 2019

PAGA path
genet =
1)
genez 2)
node A 3)
distance
.................. » geneq '
choose
path, genez
random- I
walk node | A*
distance .
distance

Graph partitioning and abstraction
Pseudo-time estimation
Preserving Graph topology across
resolutions



RECAP 4

1) Trajectory methods are employed to interrogate the dynamic cellular transition
2) Popular methods: Monocle, Seurat, etc.




C5. Reconstructing the regulatory networks underlying the trajectories

How to infer the transcription factors and pathways that dictate the cellular
dynamics




GENIE3
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Huynh-Thu et al. Plos one, 2010
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RECAP 4

1) Trajectory methods are employed to interrogate the dynamic cellular transition
2) Popular methods: Monocle, Seurat, etc.




OPEN DISCUSSION

Any new ideas to reduce the data dimensionality?
Any new strategies to cluster the data points?
Any new methods to infer the gene regulatory network?



Infer cell-cell interactions from
pseudotime ordering of single-cell data

Jun Ding
Assistant professor
Department of Medicine
Department of Biomedical Engineering
McGill University



Why cell-cell interaction inference matters?

Cell
development

Cell—cell | |
|

communicatio/n

’1'\
w & ®

| J

Tissue homeostasis Immune interaction in disease

Armingol, Erick, et al. "Deciphering cell—cell interactions and communication from gene
expression." Nature Reviews Genetics 22.2 (2021): 71-88.



Cell-cell interactions play critical roles in cancer progression

CD8+ T cell Immune evasion
, NK cell
TCR

NKGZD activated macrophage

Angiogenesis }

N

Inhibition of
VEGF ———

effector T cells

Tenascm-C -— =
recruitment

Tcell‘ iostin — B = [CTUIIMONE e
\ of macrophages
~_ Ipo ‘// \ - ‘
= eCI2 /
i CCL5
-4 IDO
/’// S 1 TG.F'B
- o“(0%1 L-10} / :

- |
- P '
-x«‘e‘,‘\// Treg i
C '
@~ = .
-~ s
Treg = h

naive CD4+ T cell

Treg recruitment & induction Macrophage recruitment & M2 polarization

Midiller, Luise, et al. "Bidirectional crosstalk between cancer stem cells and immune cell subsets." Frontiers in immunology (2020): 140.



Existing methods?

Most existing methods are based on
Expression thresholding

‘Sample or organ Key input Scoring CSvalue  CCC score Validation Study focus Ref
Cell development
" A Role of CCC between differentiated
::\ma':;) poietic cells Microarray; LRIs tg:hs;:;:g Binary No score F 1] ietic cells and HSCs in fate as
decisions
Z A Role of microenvironment in self-renewal
Brain (mouse . g Expression e s - e ik id
embryonic cortex) Microarray; LRI thresholding Binary o score Fi | versus decision of neural

Liver and iPS cells
(human)

Placenta (human)
Brain (mouse)

iPS cells (mouse)
Bone marrow (mouse)

Tissue interactions
Multiple lineages
(human)

Lungs (human)

Heart (mouse)

Lungs (mouse)
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CellPhoneDB: inferring cell-cell communication

from combined expression of multi-subunit

ligand-receptor complexes

Mirjana Efremova‘, Miquel Vento-Tormoz, Sarah A. Teichmann®"* and Roser Vento-Tormo

Input scRNA-seq

Ligand

'x Minimum
Sub.1 4 (Sub.1,Sub.2)

‘ Sub.2
|
ol

Receptor

o™

Random shuffle Null distribution of the mean
(R1-L1) in cluster 1—cluster 2

Observed mean
(R1-L1) in cluster 1—cluster 2

Pvalue

0@
0@
o

R1-L1 | rustse | Prusm
R2-L2 | ree
R3-L3

Ranking based
on specificity




Limitations?

1) Information loss if only using the mean expression

2)Not all cells in the cluster are the same (Most biological processes are
continuous)
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How to address this limitation?

% Mean expression (Ligand, Receptor)=>
&,/ two scalar value
o0 O o

® VS.

Cluster 1

<

% ® %  Temporal expression (Ligand, Receptor) =>
hd ® two vectors

Cluster 4

Solution: Integrate time/pseudo-time information with gene expression to infer Cell-cell interactions



Trasig strategy
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Impact of different sizes of the sliding window
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Window Size
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Calculating p-value for all L-R pairs

randomization => null

° distribution of interaction score
o ¥
? e®. & £ = right-tail probability =>
P& Y
& : . o p-value
Cluster 1 i . ©
%
5 @
L X @)
Background <« — @
distribution of
interaction score ;7
'Y "7@\
°o0 0 o
@
/_\ ® Cluster 1 @
~ S (>O \
~ G l J‘/:Q/ .
AN
«—— p-value ®e @

Cluster 4



How to infer the cellular trajectory? scdiff
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How to infer the cellular trajectory? cshmm

t=0.3 pathpg

l o
l >

state S 03
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x~N(go,2)

state 50,0_2
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Lin, Chieh, and Ziv Bar-Joseph. "Continuous-state HMMs for modeling time-series single-cell RNA-Seq data." Bioinformatics 35.22 (2019): 4707-4715.



Selecting paired clusters

% Most other methods infer cell-cell interactions between all possible clusters
% Trasig: Cells can only interact if both are active at the same time

For example, in a developmental process, cells at day E1 is unlikely to
interact with cells profiled at day E16.



Temporal alignment

Is the time in each path of the interaction partners the same?
What if they are not? Alignment!

Pseudotime expression profile B-spline interpolation Temporal alignment
data of ref
1.2 data of sample
1.0 4
c
k=l
73
8 o8
a
s .
06+ data of ref ) ' data of ref
= spline of ref — gpline of ref
0.4 1 data of sample data of sample
— gpline of sample — spline of sample
0 20 40 60 80 0 20 40 60 80 0 25 50 75 100 125 150 175
Pseudotime (t) Pseudotime (t) Pseudotime (t)
t—b.)
' TJ(t) Bl Scaling and shifting



UMAP 2

Trajectory and pseudotime inferred by other methods
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Street, Kelly, et al. "Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics." BMC genomics 19.1 (2018): 1-16.
Cao, Junyue, et al. "The single-cell transcriptional landscape of mammalian organogenesis." Nature 566.7745 (2019): 496-502.
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Trajectory on liver organoid differentiation data

N8 Ni2

a: Trajectory output from CSHMM
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University of Pittsburgh



Cell type annotation

tSNE_2
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Cell-cell interactions for the liver organoid data
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expression

€. Expression patterns of example ligand-receptors identified by TraSig

14

-
~

-
<o

f=}
@™

o
o

o
.

expresson

- egge 6: GNAI2

16

14

-
~

—_
<

=1
®

o
o

-~ edge B: TGFB1
— edge 11: CAV]

expression

25

N
<]

=
n

-
=3

(=]
o

‘\/\ﬁ_\_

- edge 9: FGG

edge 11: ITGAS

expresson

Temporal expression patterns for identified L-R pairs

N
o

-
w

=
L=

f=]
W

/

//:edqe 10: PLG

edge 11: FLT1

40

bin

60 80




Ligand-receptor interaction predictions of interest for functional studies

a GLE b c
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Sending and receiving cell populations
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Experimental validation -1

CD34:
hepatic progenitor cells




Experimental validation-2
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Experimental validation-3
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Comparison with other methods-1

a: Number of identified ligand-receptor pairs for each cluster pair
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Cabello-Aguilar, Simon, et al. "SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics." Nucleic acids research 48.10 (2020): e55-e55.

Efremova, Mirjana, et al. "CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand—-receptor complexes." Nature protocols
15.4 (2020): 1484-1506.



Comparison with other methods-2

SingleCellSignalR CellphoneDB
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Comparison with other methods-3
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Trasig works with other pseudotime inference methods(Slingshot)

a: Trajectory output from Slingshot c: GO terms enrichment
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Saelens, Wouter, et al. "A comparison of single-cell trajectory inference methods." Nature biotechnology 37.5 (2019): 547-554.



Trasig works with Monocle3

a:Trajectory output from Monocle3
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a: Number of identified ligand-receptor pairs for each cluster pair
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Cellular dynamics in various biological processes
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Cell differentiation & reprogramming

Schiebinger, Geoffrey, et al. "Optimal-transport
analysis of single-cell gene expression identifies
developmental trajectories in reprogramming." Cell
176.4 (2019): 928-943.
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in rheumatoid arthritis." Mayo Clinic Proceedings. Vol. 92. No. 7. Elsevier,
2017.

How to identify the regulators that dictate the cellular dynamics in those biological processes for

“interventions”?




Regulators in Gene regulatory networks (GRN)

Regression/Correlation/ODE based GRN inference
GRN Inference & e ﬂa. GENIE3 N

. Gene, Gene, 3 Learning f; Gene ranking Z /; ( X ) )-
— ~ Treeensemble,

Tree Ensemble
— fﬁ‘ %
—
Tree ensemb\e
.

Huynh-Thu, Van Anh, et al. "Inferring regulatory networks from expression
data using tree-based methods." PloS one 5.9 (2010): e12776.
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BMC systems biology 6.1
(2012): 1-9.

Zhou, Qing, et al. "A gene regulatory network in mouse embryonic stem cells."
Proceedings of the National Academy of Sciences 104.42 (2007): 16438-16443. g




RNA-seq vs. Multi-omics
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Multi-omics:
Complementary views
from different perspectives

Lee, Jeongwao, Do Young Hyeon, and Daehee Hwang. "Single-cell Sun, Yan V., and Yi-Juan Hu. "Integrative analysis of multi-omics data for discovery

multiomics: technologies and data analysis methods." Experimental & and functional studies of complex human diseases." Advances in genetics 93
Molecular Medicine 52.9 (2020): 1428-1442. (2016): 147-190.



Interactive Dynamic Regulatory Events Miner (IDREM)




Model Overview

IOHMM model M =(H,E,©,¥)

H,E denote the nodes and edges -> model structure.
O,¥ represent the parameters for calculating the the emission and transition probabilities

-> model parameters under current structure

c

Model structure D 10HMM model {
Expression
Level

Y denote the parameters for a regression model, which maps

© denote the parameters for a gaussian model, which maps the the input (TF-DNA binding) => transition probability

gene expression

at each node => emission probability. (e.g. 0.95, 0.05 shown in D)

Ernst, Jason, et al. "Reconstructing dynamic regulatory maps." Molecular systems biology 3.1 (2007): 74.



Model learning

(1) Randomly split all genes into a train set (75%) and a
test set (25%).

(2) Start searching the structure from a single chain.
Q /G AR Q
NN/

(3) Under current structure (H,E), Use Baum-welch algorithm to find
the model parameters (using train set) which present the maximal
likelihood on test set r(G_test|M). M is the current model M =(H,E,©,¥).

(4) Random Split the path under certain constraints (e.g. no
more 3 edges coming out from node). Then calculate the
score for the new model r(G_test|M_new). M_new is the
model after the splitting.

(5) We keep doing the above process until the score
converges.

Then, we got the final Structure. Finally, we used all genes to
estimate the model parameters => Final Model M.

-1

Cc Model structure
Expression
Level
14
0 &o—




Score calculation

r(GIM) =) log ) [‘[;q,,,,(, (0) I‘[/ H, =q(t)|H, -1 =gt —1).1(g,1))

eeG (lel

The first product denotes the emission probability and the second product represents
the transition probability. The inner sum is

over all paths and the outer sum is over all genes in G. $l(g, t)$ is the dynamic input
prior learned by integrating all omics data.

P(H, = q(t)|H;-1 = q(t —1),I(g,1))

\

Where the omics integration happens

This probability can be calculated using a regression model




Integration of TF-DNA interaction data

RegValue(TF,,time,) = |expression(x,z + 1) — expression(x, z)|

Then, we normalize all RegValue to [0,1] using the logistic function

1
Juol®) = =%

To determine the sign of the regulation RegDirection (x,y,z) (Note: if the original TF-DNA file already has this information, just use it directly)

If TF up , target up (activation 1)

If TF up, target down (repression -1)
If TF down, target up (repression -1)

If TF down, target down (activation 1)

The final TF-DNA interaction value :
Interaction(TFx,geney,timez)=RegValue(x,z)*RegDirection(x,y,z)*TFDNA(X,y,z)

Where, TFDNA (x,y,z) is the binary to represent whether TF x is binding to gene y at time point z.



Integration of miRNA data

miRNA information was treated as a special type of “TF”, which can only repress the target
expression. On the other hand, TF can either activate or repress target expression.

1. Regulatory interactions 2. Expression data 3. Dynamic network

Transcriptional regulation
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Integration of proteomics and PPI

It's not accurate to use gene expression level to represent the level of corresponding
TF. Besides, TF regulates the gene expression via a “impact” on RNA polymerase (
Pre-initialization complex-PIC). The impact was by a series of Protein-protein
interactions.

TE. — m E ProteinLevel, * ProteinlLevel, * PPI(x,y)
{yer}
Y : interacting proteins of x; Protein level all normalized to [0,1]

E.g.,

Case A: TF x is highly expressing, but none of its known interacting proteins are
expressing.

Case B: TF y is expressing and so do its interacting proteins. TF x and y are both
known to regulate gene z. In this specific case, TF x is more likely active compared with

Y- gene z

TF binding site
protein
A °
PIC

protein
a

protein
g



Integration of methylation data

In the main framework, the TF-DNA data is static, which means it's not changing during the process. This is definitely not the case in
reality. Here, we can use the methylation data to get the dynamic TF-DNA binding information. The methylation in the promoter
region will silence the downstream gene expression [pubmed 24555846]. Detail steps:

(1) Mapping the methylation reads and calling the methylation peaks.

(2) Compare the peaks with genomic location of TSSs of all genes.

(38) If there are peaks found in the promoter region (within upstream 10k of gene TSS), the promote of gene get methylated and we
will modify all TF-DNA binding related to this gene.

? 00

The transition model will be impacted by the dynamic TF-DNA binding. As the transition model and emission
model are tangling with each other, the emission model will be also impacted.




IDREM software interface 4 Opians

Gene Annotations r GO Analysis r DECOD Options rExpression Scaling Options | microRNA Option

[£) DREM - Dynamic Regulatory Events Miner - _ 0 X ion Option r Proteomics Option r Filtering Options I Search Options r Model Sel
1. Data Input: miRNA-Gene Interaction Source: ‘User Provided \v‘
TF-gene Interaction Source:
3 = microRNA-Gene Interaction File: ‘ ‘ I 3 Browse... ‘ } ‘
TF-gene Interactions File:| =1 Browse...
Expression Data File:| = Browse... microRNA Expression Data File: ‘ ‘ ‘ <3 Browse... H l
Saved Model File:| | =Browse.. | E
| =3 miRNA Repeat Data... |
[ ViewTrgenepata || || viewExpressionpata || @ |
"] Spot IDs in the data file i I [ =1 Repeat Data... I [ l () Log normalize data ®) Normalize data () No normalization/add 0
) Log ize data @ ize data O No i 0 Filter miRNA with no expression from regulator data: [_]
2. Gene Annotation Input: m|RNA Panel
Gene Annotation Source: |User provided -
Cross Reference Source: |User provided v
Gene Annotation File:| ‘ P @ |£| Options x
Cross Referesce File.| ‘ e Gene Annotations | GO Analysis | DECOD Options | Expression Scaling Options | microRNA Option |
option [ F icsOption |  Filtering Options | SearchOptions | Model ion Options |
Download the latest: [ | Annotations [ ] Cross References [ ] Ontology
[] Only Use Proteomcis Data for TFs [ | Use Proteomics data for all Proteins Do Not Use Proteomics data
3. Options:
=— i : Protsomics Data e
| E: Optons.. @ | Main Panel
&4 Repeat Proteomics Data File... ] (O Log normalize data (® Normalize data ) No normalization/add 0
4. Execute:
l Exocata I | l Protein-Protein Interaction File:| H & Browse... H = |
©2017, Carnegie Mellon University. All Rights Reserved. | $
(& Optons % Proteomics PPI
Gene ions | GO Analysis | DECOD Options |~ ion Scaling Options |~ microRNA Option | P an el
[ Methylation Option | Proteomics Option | Filtering Options | Search Options | Model Selection Options |
Methylation data F'ne:| ‘ [ = Browse... “ ]
- | ssowe |8 ]

Methylation Panel




IDREM application in lung development

> Gene expression

The gene expression is in FPKM format with 15 time points.

e16.5 | e18.5 | p0.5 p1.5 p2.5 p4 p5 p7 p10 p13.5 | p15 p19 p23 p28

> miRNA expression

The miRNA expression data is from NanoString technologies- ncount expression.

Based on the manual from NanoString technologies, it needs to be normalized.
http://www.nanostring.com/media/pdf/MAN_nCounter_Gene_Expression_Data_Analysis_Guidelines.pdf

Here, we used the housekeeping genes to do the normalization.
In the miRNA expression dataset, they offered the expression for a few housekeeping genes: Actb,B2m,Gapdh,Rpl19

The normalization steps:
A. First calculate the geometric mean of the expression of these housekeeping genes for each lane (sample)

Gsample = (Hgi)(l/lHD
icH


http://www.nanostring.com/media/pdf/MAN_nCounter_Gene_Expression_Data_Analysis_Guidelines.pdf

> Proteomics data
There are 15 time points for the proteomics data

e16.5 | e18.5 | p0.5 p1.5 p2.5 p4 p5 p7 p10 p13.5 | p15 p19 p23 p28

Summary Table
Time Point | e16.5 e18.5 p0.5 pl| pl5| p2.5|p4 p5 p7 pl0 p13.5 pl5|pld p23 p28
gene expression | O (0] (o) O |0 0O |00 |0 |0 |O 0 |0 |0 |O
miRNA expression | O X (0] 0|0 0 O|O0|O0|O (O o o0 0 |o
proteomics o} 0} 0} 00 0} O|0|O0|O0 (O O [0 |0 (O

> Methylation data

we have the methylation for the following 6 time point:

p0.5, p2.5,p7,p10,p19,p28

By combined all the above datasets, we decided to use the following 14 time points.

e16.5 | p0.5 p1.5 p2.5 p4 p5 p7 p10 p13.5 | p15 p19 p23 p28



Top regulators B

3 A SPIB,ETS1,FLI1,CUZD1,SFPI1,ETV4,ELF2,PIK3R3,ERG,PSMD12
miR-1192 ,miR-495,miR-590-3p, miR-186,miR-30e
b 1 — 4 | RB1,E2F5,E2F2,miR-590-3p, TBP,E2F4,NKX3-1, TFDP1

2 — A | miR-451,miR-758,miR-187,IRF5,IRF3,IRF4,RELA, IRF2,SRF,IRF6

2 — 5 | STAT5A,E2F1,CEBPA,CEBPB,STAT6,VDR,GATA1,PTGDR,SRPR

1 5

)
/

2 — 6 | ELK4,miR-210,miR-551b,miR-433,miR-190,ZBTB16

3 — H | NR111,SMAD3,SFPI1,ETS1,SPIB1,PIK3R3,ERG,PSMD12,FSCN1,ATM1

3 — I | miR-192,miR-495,miR-141,miR-590-3p,miR-421

4 — J | miR-377, EGR2,EGR3,miR-302,miR-338-3p,HIC1,miR-302d

4— K | TRAF4,ALX1,miR-132,ALX4,miR-296-3p,miR-451,POU2F1,miR-485

\N
/
\
—T O<'nrn ow

4 — L | OTX1,0TX2,POUSF1,POU2AF1, HMGA2,HOXA4,CDX1/2,NKX6-2,GATA6

2 5 — B | IRF8,IRF6,IRF2,RF5,IRF3,IRF4,miR-126-3a,IRF9,miR-183,PAX6

5 — B | RFX1,NKX2-1,SMAD3,SP1,5P4,REXANK,RFX5 RFXAP,SMAD1, TRAF4

6 — D | IL6,TBP,RB1,miR-182,E2F4, BESRRA,GLI3,GLI1,GTF2A2,GTF2A1

6 — 7 | let-7b,let-7a,let-7g,let-7i,miR-133a,miR-133b

7 — 8 | IRF9,IRF7,IRF5,IRF3,IRF4,STAT1,IRF1,STAT2,IRF2,miR-539

7 — G | HINFP,ARNT,miR-184,XBP1,PITX2,RFX1,MYCN,MXI1,HAND1

8 — C | STAT2,miR-708,miR-449¢,STAT4,miR-494,SRY,STAT6,IRF1,miR-539

0 P05 pl plS p25 p4  pS  p7  plo pl3S pl5 pl p23  p28 8 — F | HES1,TCFAP2A,ZBTB7A,MAZ, ARNT2,miR-324, WT1,NFYB,TEAD2,ZIC2

Path:A

OBAL CONFIG c
. : 4(pl)  12(pl5) 22(p2.5) 32(p4) 42(pS) 53(p7) 64(pl0) 75(p13.5)86(p15) 98(pl9) 110(p23) 122(p28)
o B Path:B
"";*’“m‘"'““""'w“ 13(p15) 23(p2.5) 33(p4) 43(pS) 54(p7) 65(pl0) 76(p13.5)87(pl5) 99(pl9) 111(p23) 123(p28)
; 2 5(p1) Path:E
1(pO. 14(p15) 24(p2.5) 34(p4) 44(pS) 55(p7) 66(pl0) 77(p13.5)88(p15) 100(p19) 112(p23) 124(p28)
Path:D
15(p1.5) 25(p2.5) 35(p4) 45(pS) 56(p7) 67(pl0) 78(p13.5)89(pl5) 101(pl9) 113(p23) 125(p28)
Path:G
6(p1) 46(ps) 57(p7)  68(pl0) 79(p13.5)90(p15) 102(pl9) 114(p23) 126(p28)
Path:C
16(p1.5) 26(p2.5) 36(p4)
91(p15) 103(p19) 115(p23) 127(p28)
= s 47(p5)  58(p7) 69(pl0) 80(pl3. Path:F
xpression Panel
. 0(e1§¥5) 92(p15) 104(p19) 116(p23) 128(p28)
Epigenomics Panel Path:H

7(p1)  17(pl5) 27(p2.5) 37(p4) 48(pS) 59(p7)  70(pl0) 81(p13.5)93(plS) 105(pl9) 117(p23) 129(p28)

Proteomics Panel

2(p0.5) Path:l
Cell Types Panel 8(pl)  18(pl5) 28(p2.5) 38(p4) 49(pS) 60(p7) 71(pl0) B2(p13.5)94(pl5) 106(pl9) 118(p23) 130(p28)
Path:J N " . . .
SEhbis ot 11(p1) 21(p1.5) 31(p2.5) 41(p4) 52(p5) 63(p7) 74(p10) 85(p13.5)97(p1l5) 109(p19) 121(p23) 133(p28) DI ng ’ J u n ’ et aI . I nteg ratl ng m u Itlom ICS
O et Paihk longitudinal data to reconstruct networks
Nanal 3(p0.5) 9(p1) 19(p1.5) 29(p2.5) 39(p4) 50(p5) 61(p7) 72(pl0) 83(p13.5)95(p1l5) 107(p1l9) 119(p23) 131(P§::ITL u n d e rlyi n g I u n g d eve I 0 p m e nt i " American Journal
Link to Human model 10(1) 20(p15) 30(n25) 40(p4) 51(pS) 62(p7) 73(p10) 84(p13.5)96(p1S) 108(p19) 120(p23) 132(p28) of Physiology-Lung Cellular and Molecular

https://www.cs.cmu.edu/~jund/idrem_lung/ Physiology 317.5 (2019): L556-L568.



https://www.cs.cmu.edu/~jund/idrem_lung/

path expression pattern
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Mean Linear Intercept (M)
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Experimental validation for the novel regulators (miR-539 and miR-590) from IDREM
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Ranked Gene Expression
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Summary -l
1)  Graphical models are very flexible for data integration
(particularly the Input-output hidden markov)

2) Integration of multi-omics data could lead to the discovery of
novel regulators for various biological processes

3) Interactively visualized model could promote novel biological
discoveries



Multi-omic model that identifies novel drugs against COVID-19
SARS-Cov2 modified SDREM analysis




DREM is useful, but several
guestions remain ...

Who controls the
master regulators?




Infection

Response to

Cell membrane

What happened here?

Nucleus

198




SDREM: Extending DREM to
model signaling networks

Inputs:
e Condition specific inputs:
- Time series expression data following treatment
- (A few) receptors interacting with invader or activated by condition of
interest

- Phosphorylation data
- Protein level data

e General interaction data (not necessarily from the same
condition):
- Protein-DNA interactions

- Motif information
- Protein interaction networks



Inferring signaling pathways

Dynamic
gene
expression

Source
proteins




lterative method for
reconstructing dynamic
signaling and regulatory
networks




MSDREM model

Red — Source proteins (interacting with virus protein directly)
Green — Inferred signaling proteins

Blue — TFs

Diamond shape — Top phosphorelated protein
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Detailed results can available at: SRNIR s ,///////' =
https://filedn.com/IL2xsyY8teiHHTk3wYgUmVu/re NV =

sults/BU_RNA_Proteomics/ Lo



https://filedn.com/lL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/
https://filedn.com/lL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/

The IDREM model

of the RNA-seq

Proteomics data

— 2

Enable/Disable mouseover popup:
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Click: (Reguiator ~)

Shift Click: (ToppGene <)
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Interactive viewer:

https://filedn.com/IL 2xsyY8teiHHTk3wYq
UmVu/results/BU_RNA_Proteomics/cpm.
csv.log.merged.csv_viz/idrem_result.html

Using the tool you can explore
gene expression levels, top
TFs and the paths they
regulate and protein levels of
all genes.

Please refer to the manual
(bottom of the panel)

for a description of the IDREM
model.


https://filedn.com/lL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/cpm.csv.log.merged.csv_viz/idrem_result.html
https://filedn.com/lL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/cpm.csv.log.merged.csv_viz/idrem_result.html
https://filedn.com/lL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/cpm.csv.log.merged.csv_viz/idrem_result.html

Top 50 proteins from msdrem single knock-out

0.166
0.1596
0.1076

o Please find a complete list of inferred proteins using the link below:

0.069 https://filedn.com/IL2xsvY 8teiHHTk3wYgUmVu/results/BU RNA_Proteomics/singleKnockDown Protein

0.0586

00414 Info.tsv
0.04

0.039
0.038 . . .
0038 Top Phosphorylated proteins: 676 in total. They are the largest log fold change of phosphorylation (vs
0033 uninfected). Please refer to page 2 for the detailed step of getting top phosphorylated proteins.
0.027
0.027
0.025
0.025
0.0246
0.024
0.023
0.022
0.021
0.021
0.021
0.021
0.0204
0.02
0.02
0.02
0.019
0.019
0.019
0.018
0.018
0.018
0.018
0.017
0.016
0.016
0.016
0.016
0.015
0.015
0.015
0.0146
0.0144
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https://filedn.com/lL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/singleKnockDown_ProteinInfo.tsv
https://filedn.com/lL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/singleKnockDown_ProteinInfo.tsv

Top protein pairs from msdrem double knock-out

I EY RIS

©
B
g

INUP98
INUP98
HD4
crReBEp
EP300
RD4
INUP62
CREBBP
CReBEP
IATF2
SMARCA4
IATF2
crReBE?
P300
IATF2
MYC
INUP98
INUP98
INCL
IATF2
FOXAL
HDAC2
INUP98
INFKB2
SMARCA4
cespa
MATR3
INUP98
EP300
39 |HDAC2
CREBER
IATF2
INUP98
HDAC2
INUP98

Sz |2|a|n|=
©

~
S

S

oo [ro
SRR
m

NN
B (&=
=

S o b g bl e B

=4

NS
=28

Gene B
NUP98
ZNF318
TCF12
TLE1
HDAC2

2NF318
EP300
MYC
TCF12
MYC
INF318
REEPS
PLAT
NUP98
HDAC2
NUP98
TCF12
TLE3
NUP98
TCF12
NUP98
NUP98
TBKL
TLEL
MYC
INF318
NF318
RELA
TLEL
REST
TLEL
TCF12
NUP98
PKP2
SUMO2
TCF12

Top Phosphorylated Top Phosphol

Y
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lated |Source A Source B Epsilon_score

Y

Zzzzzz<<<zZzz<zZz<zZzzZzzz<<zzz<<zzzzzzzzz<<zzz<=<zz=z=z=<-=<-=<

Y
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-0.054084280710472
-0.031639974251359
-0.023886891746087
-0.018165796550107
-0.017383578741585
-0.0169261382919
-0.016096475119695
-0.014742251576723
-0.014339963027297
-0.014299673399903
-0.012833236313526
-0.011113506435719
-0.010289275657974
-0.010281521404165
-0.009947199504145
-0.00933669939213
-0.009051626505638
-0.008642882480171
-0.008426606752971
-0.008298515826746
-0.007991135702319
-0.007712495917196
-0.007504625314953
-0.007410521288836
-0.007228736760322
-0.007209177250831
-0.007177888353749
-0.006952181242069
-0.006639693196061
-0.006610557717119
-0.00657219011527
-0.006376278210566
-0.006361744851497
-0.006292984770442
-0.006063401228953
-0.005990594453656
-0.005907491793951
-0.005573785831696
-0.005560134845143
-0.005312975410987
-0.005038024067538
-0.00502727805059
-0.004865073094444
-0.004838057789369
-0.004700443394698
-0.004698165698413
-0.004526911503787
-0.004422742995151
-0.00439821308928

Please find a complete list of inferred proteins using the link below:
https://filedn.com/IL 2xsyY 8teiHHTk3wYaUmVu/results/BU RNA_Proteomics/DoubleKn
ockDown_Proteininfo 1k.tsv

Top Phosphorylated proteins: 676 in total. They are the largest log fold change of
phosphorylation (vs uninfected). Please refer to page 2 for the detailed step of getting
top phosphorylated proteins.


https://filedn.com/lL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/DoubleKnockDown_ProteinInfo_1k.tsv
https://filedn.com/lL2xsyY8teiHHTk3wYqUmVu/results/BU_RNA_Proteomics/DoubleKnockDown_ProteinInfo_1k.tsv

Protein top 100 gene list + TF
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Protein top 100 gene list + TF

Enriched GO categories for
intersection genes

0.073937 0.067354
0.184453 0.162935

gene_sy hyperte

Tnbol nsion COPD diabetessmoke cancer sex Homo sapiens (REF) upload_1 (Hierarchy ) NEW! ®)

- GO biological process complete # # expected Fold Enrichment +/ raw Pvalue 4 FDR
ube2i Rositive regulation of nitrogen compound metabolic process 3274 30 722 4.15 + 5.94E-14 9.48E-10
staté regulation of nitrogen compound metabolic process 5895 37 1301 2385 + 328E-13 1.05E-09
neks regulation of transcription by RNA polymerase Il 2193 25 484 517 + 292E-13 1.17E-09
g regulation of nucleobase-containing compound metabolic process 4041 2 8o 359+ 223E43 1.19E-09
timmg regulation of macromolecule metabolic process 6474 38 1428 266 + T7.80E-13 1.38E-09
jund regulation of primary metabolic process 6088 37 1343 275 + 962E-13 1.40E-09
Imna negative regulation of RNA biosynthetic process 1274 20 281 7.12 + T7.09E-13 1.41E-09
e positive regulation of macromolecule metabolic process 3621 0 79 376+ 8BTE13 142600
Soxd positive regulation of transcription by RNA polymerase |l 1259 20 278 7.20 + b571E-13 1.52E-09
junb negative regulation of nucleic acid-templated transcription 127, 20 281 713 + 6.89E-13 1.57E-09
rab7a symbiotic process 884 18 195 9.23 + 206E-13 1.65E-09
s negative regulation of metabolic process 3008 28 683 410+ 124E12 166E-09
Isrf regulation of RNA metabolic process 3781 30 834 3.60 + 280E-12 3.19E-09
mef2a negative regulation of RNA metabolic process 1373 20 303 6.60 + 276E-12 3.39E-09
smarca4 negative regulation of transcription, DNA-templated 1219 19 269 7.07 + 375E-12 3.99E-09
brd2 & positive regulation of transcription, DNA-templated 1600 21 353 595 + 4.46E-12 4.45E-09
i) . regulation of gene expression 4873 33 1075 307 + 567E-12 533E-09
sox10 2 positive regulation of metabolic process 3920 30 865 347 + T726E-12 6.10E-09
thkl 2 viral process 792 16 175 9.16 + 721E-12 6.40E-09
ide ] negative regulation of nucleobase-containing_compound metabolic process 1477 20 326 6.14 + 103E-11 824E-09
iz 2 negative regulation of cellular metabolic process 2607 5 575 435+ 138E-1 B4SE09
nup8s 2 negative regulation of macromolecule biosynthetic process 1500 20 331 6.04 + 136E-11 8.70E-09
tle3 2

sumol 2

ctnnbl 2

golga2 2

hmgal 2

top2a 2

cep250 8

foxm1 2

pml (9

secl6a

nup214

h2afx

sox2

plau

chd4

csnk2al

arnlh



Toprp RANKED PROTEINS*+TFs witH RNA ScreeN Hits EVIDENCE

 Top ranked proteins+TFs from mSDREM analysis (179 genes)

* 45 genes from mSDREM and condition-specific analysis

Source Phosphorylate
Gene ? Function Effect d?
catalyzes the phosphorylation and inactivation of the
branched-chain alpha-ketoacid dehydrogenase
BCKDK Y complex increased SARS-CoV replication Y (24hr)
RAB7A? Y key regulator in endo-lysosomal trafficking reduced MHV-CoV replication N
CSNK2A serine/threonine-protein kinase that phosphorylates
1 N acidic proteins such as casein decreased SARS-CoV replication N
Transcription factor that plays a key role in neuronal
POU3F2| N differentiation decreased IBV-CoV replication N
involved in transmitting chemical signals from the cell| conferred resistance to virus-induced cell death
SMAD4" | N surface to the nucleus (SARS-CoV-2) N
encodes for BRG1, a subunit of several different
protein groupings called SWI/SNF protein complexes.
SMARCA SWI/SNF complexes regulate gene activity thru conferred resistance to virus-induced cell death
4 N chromatin remodeling (SARS-CoV-2) Y (6hr & 24hr)
essential for nuclear architecture and chromosome
[ decrease IBV’M@%E-QZ* N

P-value 4.72E-03*




SDREM Predictions

Gene minRank Source Approved drug name(s)
RELA 11 N bortezomib; velcade
NFKB2 26 N bortezomib; velcade iAT2 cells in 96-
DNMT1 31 Y azacitidine; decitabine xee[rl‘:g?:;!:f
BRD4 32 Y fedratinib; alprazolam 10 1M 200 10/0M 10N LaM 10001 10mM SARS-CoV-2
ibrutinib; lapatinib; neratinib; afatinib; . - MOI 0.1, 2dpi
acalabrutinib; dacomitinib; trastuzumab
ERBB2 45 Y :
emtansine; trastuzumab deruxtecan;
tucatinib; pertuzumab; trastuzumab E : r'cD: DMSO
Drugs: 7
1.  Bortezomib (NFKb inhibitor) concentrations: 10uM, 1uM, 0.1uM, 0.01uM ; ;
1. Stock = 50mM
2. IC. (A549s) = 0.0025 uM 10 uM 100 nM 10 nM 10 uM 1uM 100 nM 10 nM
2. 5-Azacytidine (DNMT1 inhibitor) concentrations: 10uM, 1uM, 0.1uM,
0.01uM

1. Stock =100mM
3.  Eedratinib (BRD4 inhibitor) concentrations: 10uM, 1uM, 0.1uM, 0.01uM
1. Stock = 50mM
2. IC,, (Caco-2) = 2.1-6.5uM, (HEK293) 1.2uM
4, Neratinib (ERBBZ2 inhibitor) concentrations: 10uM, 1uM, 0.1uM, 0.01uM
1. Stock =10mM
2. IC,, (MDA and other cancer cell lines) = <0.005uM or 1-10uM
Apical: 30 minute pre-treatment only, treat apically with virus for 1 hr, then
only basolaterally for remainder of experiment

Jau




Summary -l
1) iDREM framework could be extended to study infectious
disease (signaling networks + regulatory networks)

2) Integration of multi-omics data could lead to the discovery of
novel drug for COVID
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Nanopore sequencing

Third-generation sequencing

https://nanoporetech.com/applications/dna-nanopore-sequencing
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https://www.sciencedirect.com/topics/neuroscience/nanopore-sequen
cing



